• ポートフォリオ機能


ポートフォリオを新規に作成して保存
既存のポートフォリオに追加保存

  • この表をプリントする
PDF PDFをダウンロード
審決分類 審判 全部無効 2項進歩性  H01L
管理番号 1194135
審判番号 無効2006-80075  
総通号数 113 
発行国 日本国特許庁(JP) 
公報種別 特許審決公報 
発行日 2009-05-29 
種別 無効の審決 
審判請求日 2006-04-24 
確定日 2009-03-13 
訂正明細書 有 
事件の表示 上記当事者間の特許第3510622号発明「終点検出方法およびシステム」の特許無効審判事件について、次のとおり審決する。 
結論 訂正を認める。 特許第3510622号の請求項1ないし20に係る発明についての特許を無効とする。 審判費用は、被請求人の負担とする。 
理由 第1.手続の経緯
原出願 平成 8年 3月28日
(優先権主張平成7年3月28日、平成8年2月22日)
本件出願 平成15年 2月19日(特許法第44条適用)
設定登録 平成16年 1月 9日(特許第3510622号)
無効審判請求 平成18年 4月24日
答弁書 平成18年 8月16日
口頭審理 平成18年10月18日
無効理由通知 平成18年10月18日
意見書 平成18年12月 7日
訂正請求 平成18年12月 7日
弁駁書 平成19年 1月24日

第2.訂正請求について
1.訂正請求の内容
被請求人が求めた訂正の内容は、特許請求の範囲の請求項1、請求項11を以下のとおりとするものである。なお、下線は当審で付した。

(訂正前)
「【請求項1】 ウエハの研磨の最中に使用する終点検出方法であって、前記方法は、
研磨表面、及び上面及び下面を有する中実な透明物質のウィンドウを有する研磨パッドで前記ウエハを研磨するステップであり、ここで、
(i)前記ウィンドウは、前記研磨パッドの一部であって、光ビームに対して少なくとも部分的に透過性を有する、前記研磨パッドの前記一部を備え、又は
(ii)前記ウィンドウは、前記パッド内に形成されたプラグであって、光ビームに対して部分的に透過性を有するプラグを備える、ステップと、
前記研磨パッド内の前記ウィンドウを通して、検出光ビームを研磨されるウエハのウエハ表面に透過するステップと、
前記ウエハ表面で反射され、前記研磨パッド内の前記ウィンドウを通過した検出光ビームの反射光を受けるステップと、
前記ウエハ表面で反射された検出光ビームの反射光を使用して、研磨終点を決定するステップと
を含む方法。」
「【請求項11】 ウエハの研磨装置と共に使用する終点検出システムであって、前記システムは、
研磨表面、及び上面及び下面を有する中実な透明物質のウィンドウを有する研磨パッドであり、ここで、
(i)前記ウィンドウは、前記研磨パッドの一部であって、光ビームに対して少なくとも部分的に透過性を有する、前記研磨パッドの前記一部を備え、又は
(ii)前記ウィンドウは、前記パッド内に形成されたプラグであって、光ビームに対して部分的に透過性を有するプラグを備える、研磨パッドと、
前記研磨パッド内の前記ウィンドウを通して、検出光ビームを研磨されるウエハのウエハ表面に透過する光源と、
前記ウエハ表面で反射され、前記研磨パッド内の前記ウィンドウを通過した検出光ビームの反射光を受け、前記ウエハ表面で反射された検出光ビームの反射光を使用して、研磨終点を決定する検出器と
を備えるシステム。」

(訂正後)
「【請求項1】 CMPによるウエハの研磨の最中に使用する終点検出方法であって、前記方法は、
研磨表面、及び上面及び下面を有する中実な透明物質のウィンドウを有する研磨パッドで前記ウエハを研磨するステップであり、ここで、
(i)前記ウィンドウは、前記研磨パッドの一部であって、光ビームに対して少なくとも部分的に透過性を有する、前記研磨パッドの前記一部を備え、又は
(ii)前記ウィンドウは、前記パッド内に形成されたプラグであって、光ビームに対して部分的に透過性を有するプラグを備える、ステップと、
前記研磨パッド内の前記ウィンドウを通して、検出光ビームを研磨されるウエハのウエハ表面に透過するステップと、
前記ウエハ表面で反射され、前記研磨パッド内の前記ウィンドウを通過した検出光ビームの反射光を受けるステップと、
前記ウエハ表面で反射された検出光ビームの反射光を使用して、研磨終点を決定するステップと
を含む方法。」
「【請求項11】 ウエハのCMP研磨装置と共に使用する終点検出システムであって、前記システムは、
研磨表面、及び上面及び下面を有する中実な透明物質のウィンドウを有する研磨パッドであり、ここで、
(i)前記ウィンドウは、前記研磨パッドの一部であって、光ビームに対して少なくとも部分的に透過性を有する、前記研磨パッドの前記一部を備え、又は
(ii)前記ウィンドウは、前記パッド内に形成されたプラグであって、光ビームに対して部分的に透過性を有するプラグを備える、研磨パッドと、
前記研磨パッド内の前記ウィンドウを通して、検出光ビームを研磨されるウエハのウエハ表面に透過する光源と、
前記ウエハ表面で反射され、前記研磨パッド内の前記ウィンドウを通過した検出光ビームの反射光を受け、前記ウエハ表面で反射された検出光ビームの反射光を使用して、研磨終点を決定する検出器と
を備えるシステム。」

2.訂正請求についての当審の判断
訂正請求について検討する。
上記訂正は、ウエハの研磨形態を「CMP」に特定するものであるから、特許請求の範囲の減縮を目的とし、新規事項の追加に該当せず、実質上特許請求の範囲を拡張、変更するものでもない。
したがって、上記訂正は、特許法第134条の2第1項の規定に適合し、同条第5項で準用する特許法第126条第3項、第4項の規定にも適合するので、上記訂正を認める。

第3.請求人の主張
請求人は、本件特許の請求項1ないし20に係る発明(以下「本件発明1ないし20」という。)を無効とするとの審決を求めている。
その理由は、概要、以下のとおりである。ただし、その後、撤回したものは省略した。

1.特許請求の範囲の記載要件違反(特許法第36条第6項)
本件発明1ないし20の発明特定事項である「光ビーム」は、一般光も含むものであるが、発明の詳細な説明では「レーザービーム」、「コリメートされた光」についての記載はあるが、一般光についての記載はない。
したがって、本件発明1ないし20は、発明の詳細な説明に記載した発明でないものを含む。

2.明細書の記載要件違反(特許法第36条第4項)
(1)研磨パッドについて
光ビーム透過性を有する研磨パッドとされるEX2000又はIC1000は、入手不可能であり、入手できても光透過性がないから、実施できる程度の記載がない。
(2)図9、図10について
図9、図10のデータの具体的条件等が不明であり、研磨中にスラリー厚は変化するから、このような結果となるとは考えられない。
(3)図13について
基板には、配線部と非配線部があり、両者の干渉信号が混在する。よって、図13のように干渉信号に周期性が現れるとは限らないから、研磨終了検知のためには、2サイクル以上必要であり、オーバー研磨となる。
(4)段落0016について
段落0016のように、所定の波長のみを通すフィルタをかけると、状態が様々なウエハの検出はできない。
(5)均一性の尺度について
均一性を得るためには、ウエハ全領域を測定する必要があるが、段落0059の装置では、ウエハの一部分しか測定できない。均一性の尺度を測定することについて、実施できる程度の記載がない。
(6)図16のデータについて
図16は、記載方法に不備があり、本システムにより取得したものではない。出所不明である。

3.進歩性違反(特許法第29条第2項)
本件発明1?4、8、11?14、18は、本件出願の原出願の優先日前に頒布された刊行物に記載された発明に基づいて、当業者が容易に発明をすることができたものである。

第4.被請求人の主張
これに対し、被請求人は、本件審判請求は成り立たないとの審決を求めている。
その理由の概要は、以下のとおりである。

1.特許請求の範囲の記載要件違反(特許法第36条第6項)
発明の詳細な説明における説明は、一例にすぎない。一般光も利用できることは技術常識から明らかである。

2.明細書の記載要件違反(特許法第36条第4項)
(1)研磨パッドについて
特定の研磨パッドを必須とするものではないから、それが入手不可能だからといって直ちに実施できないというものではない。
(2)図9、図10について
本件発明のウインドウはウエハと接触可能であり、スラリー量は最小となるから、スラリー厚が変化するという請求人の主張は、前提が異なる。特許図面は、補助的な性質のものにすぎない。
(3)図13について
不要な成分は除去可能であるから、周期性が生じる。信号の生じ方により、1サイクル以下での検出も可能である。
(4)段落0016について
配線などの構造体に関する周波数をカットする旨の段落0047の記載を考慮すれば、問題はない。
(5)均一性の尺度について
ウエハ表面の様々な領域が通過する旨の段落0057の記載を考慮すれば、問題はない。
(6)図16のデータについて
誇張して表現する旨の段落0057の記載を考慮すれば、問題はない。特許図面は、補助的な性質のものにすぎない。

3.進歩性違反(特許法第29条第2項)
独立請求項である請求項1、請求項11に係る発明のプラグと、甲第13号証の透明窓材とは、構成、作用効果ともに異なる。
他の請求項は、請求項1、又は請求項11に従属するものであるから、同様に進歩性を有する。

第5.無効理由通知
当審において、審判請求時の証拠に加え、請求人からその後提出され参考資料とされた甲第22号証を職権で採用の上、無効理由を通知した。
無効理由の概要は、以下のとおりである。

1.進歩性違反(特許法第29条第2項)
本件発明1?20は、本件出願の原出願の優先日前に頒布された刊行物に記載された発明に基づいて当業者が容易に発明をすることができたものである。

2.明細書の記載要件違反(特許法第36条第4項)
上記第3.2.に同じ。

第6.進歩性違反についての当審の判断
1.本件発明
本件発明1ないし20は、訂正された明細書及び図面の記載からみて、特許請求の範囲の請求項1ないし20に記載された事項により特定される以下のとおりのものと認める。

「【請求項1】 CMPによるウエハの研磨の最中に使用する終点検出方法であって、前記方法は、
研磨表面、及び上面及び下面を有する中実な透明物質のウィンドウを有する研磨パッドで前記ウエハを研磨するステップであり、ここで、
(i)前記ウィンドウは、前記研磨パッドの一部であって、光ビームに対して少なくとも部分的に透過性を有する、前記研磨パッドの前記一部を備え、又は
(ii)前記ウィンドウは、前記パッド内に形成されたプラグであって、光ビームに対して部分的に透過性を有するプラグを備える、ステップと、
前記研磨パッド内の前記ウィンドウを通して、検出光ビームを研磨されるウエハのウエハ表面に透過するステップと、
前記ウエハ表面で反射され、前記研磨パッド内の前記ウィンドウを通過した検出光ビームの反射光を受けるステップと、
前記ウエハ表面で反射された検出光ビームの反射光を使用して、研磨終点を決定するステップと
を含む方法。
【請求項2】 前記研磨するステップは、ポリウレタンから作られたウィンドウを有する研磨パッドで研磨するステップを含む、請求項1に記載の方法。
【請求項3】 前記研磨するステップは、添加物を有するポリウレタンを備える非透過性部分を有する研磨パッドで研磨するステップを含む、請求項2に記載の方法。
【請求項4】 前記ウィンドウは上面を有し、前記研磨表面と前記上面とは同一平面上にある、請求項1に記載の方法。
【請求項5】 前記研磨パッドの底面は、前記ウィンドウに調心され、かつ前記ウィンドウに伸びる取り除かれた部分を含む、請求項1に記載の方法。
【請求項6】 研磨パッドは、研磨面を有する第1の層と、研磨面と反対側の第2の層とを含む、請求項1に記載の方法。
【請求項7】 前記プラグは、前記第1の層内に位置する、請求項6に記載の方法。
【請求項8】 前記ウィンドウは、完全に前記研磨表面と前記研磨パッドの底面との間に配置される、請求項1に記載の方法。
【請求項9】 前記反射光を使用するステップは、周期的な干渉信号を検出するステップを含む、請求項1に記載の方法。
【請求項10】 前記反射光を使用するステップは、周期的な干渉信号によって現れるサイクルの数を計数するステップを含む、請求項9に記載の方法。
【請求項11】 ウエハのCMP研磨装置と共に使用する終点検出システムであって、前記システムは、
研磨表面、及び上面及び下面を有する中実な透明物質のウィンドウを有する研磨パッドであり、ここで、
(i)前記ウィンドウは、前記研磨パッドの一部であって、光ビームに対して少なくとも部分的に透過性を有する、前記研磨パッドの前記一部を備え、又は
(ii)前記ウィンドウは、前記パッド内に形成されたプラグであって、光ビームに対して部分的に透過性を有するプラグを備える、研磨パッドと、
前記研磨パッド内の前記ウィンドウを通して、検出光ビームを研磨されるウエハのウエハ表面に透過する光源と、
前記ウエハ表面で反射され、前記研磨パッド内の前記ウィンドウを通過した検出光ビームの反射光を受け、前記ウエハ表面で反射された検出光ビームの反射光を使用して、研磨終点を決定する検出器と
を備えるシステム。
【請求項12】 前記ウィンドウは、ポリウレタンから作られている、請求項11に記載のシステム。
【請求項13】 前記研磨パッドは、添加物を有するポリウレタンを備える非透過性部分を有する、請求項12に記載のシステム。
【請求項14】 前記ウィンドウは上面を有し、前記研磨表面と前記上面とは同一平面上にある、請求項11に記載のシステム。
【請求項15】 前記研磨パッドの底面は、前記ウィンドウに調心され、かつ前記ウィンドウに伸びる取り除かれた部分を含む、請求項11に記載のシステム。
【請求項16】 研磨パッドは、研磨面を有する第1の層と、研磨面と反対側の第2の層とを含む、請求項11に記載のシステム。
【請求項17】 前記プラグは、前記第1の層内に位置する、請求項16に記載のシステム。
【請求項18】 前記ウィンドウは、完全に前記研磨表面と前記研磨パッドの底面との間に配置される、請求項11に記載のシステム。
【請求項19】 前記検出器は、周期的な干渉信号を検出する、請求項11に記載のシステム。
【請求項20】 前記検出器は、周期的な干渉信号によって現れるサイクルの数を計測する、請求項19に記載のシステム。」

2.刊行物記載の発明
(1)甲第13号証
本件出願の原出願の優先日前に頒布された刊行物である甲第13号証(特開平7-52032号公報)には、以下の記載がある。

ア.第3ページ第3欄第39?42行
「本発明方法において、定盤及び研磨布の回転中心と周縁との間に設けた窓からウエハの研磨面の光の反射状態を見て研磨状態を判定すれば、研磨を中断せずに研磨状態の終点を知ることが出来る」
イ.第4ページ第5欄第7?29行
「図1、図2に示した実施例について説明する。定盤1は直径300mm、厚さ10mmのアルミニウム製の円盤で、その中心の片面に定盤1を回転するための軸が固定してある。定盤1の軸を固定した面の反対側の面には、中心から放射状に伸びる近接した2本の直線で囲まれ、中心付近から周縁近くまで伸びた溝2が設けてある。・・・溝2の長手方向中央には、直径10mmの貫通孔3が設けられ、溝2の反対側では円錐状に拡大している。貫通孔3の溝2側にはパイレックス透明ガラス製の透明窓材4が嵌め込まれ、研磨液が漏れないようにしてある。
定盤1の溝2を有する面には、・・・ウレタン含浸ポリエステル不織布からなる研磨布5が張り付けられ、溝2に相当する部分は溝2と同形に切り抜かれて、研磨布窓6が形成されている。透明窓材4は定盤1の表面より約0.5mm突出するが、研磨布5の弾性を考慮しても研磨布5の表面より十分低くなっている。
定盤1の溝2の反対側には透明窓材4の回転路に面して研磨するウエハ7の研磨面に光を照射しその反射光を受光するプローブ9が配置されている。」

これら記載事項を、技術常識を勘案しつつ、本件発明1に照らして整理すると、甲第13号証には、以下の発明が記載されている(以下「甲13発明」という。)
「ウエハの研磨の最中に使用する終点検出方法であって、前記方法は、
研磨表面を有し、研磨布窓内に透明窓材が配される研磨布で前記ウエハを研磨するステップであり、ここで、
前記透明窓材は、定盤の貫通孔に嵌め込まれており、
前記研磨布内に配される前記透明窓材を通して、検出光を研磨されるウエハのウエハ研磨面に透過するステップと、
前記ウエハ研磨面で反射され、前記研磨布内に配される前記透明窓材を通過した検出光の反射光を受けるステップと、
前記ウエハ研磨面で反射された検出光の反射光を使用して、研磨終点を決定するステップと
を含む方法。」

(2)甲第22号証
本件出願の原出願の優先日前に頒布された刊行物である甲第22号証(特開平5-309558号公報)には、以下の記載がある。

ア.第2ページ第1欄第2?9行
「研磨対象ウェーハの所定の厚さに等しい波長の光を研磨対象ウェーハに全反射角で入射し、前記研磨対象ウェーハを光が透過したとき、または研磨対象ウェーハの所定の厚さに等しい波長の光を研磨対象ウェーハに偏光角で入射し、前記研磨対象ウェーハから反射する偏光を遮断するように配設された偏光板を前記偏光が通過したとき、研磨を終了することを特徴とする貼り合わせウェーハの研磨方法。」
イ.第2ページ第2欄第7?20行
「上記のような研磨方法で貼り合わせウェーハの一方、すなわちSOIウェーハについて、その厚さの大部分を研磨により除去し、1μmないしそれ以下の層を素子形成層として均一な厚さに残すことは極めて困難である。特に、素子形成層の厚さのばらつきが大きく、±0.5μm程度の精度であるため、SOI半導体基板の製造歩留りが低い。また、貼り合わせウェーハをウェーハ研磨機から取り外してSOIウェーハの厚さを測定する方法では、作業能率を向上させることができない。本発明は上記従来の問題点に着目してなされたもので、SOI半導体基板の製造工程において、素子形成層であるSi層を高精度に、かつ能率よく所望の厚さに研磨するための貼り合わせウェーハの研磨方法を提供することを目的としている。」
ウ.第3ページ第3欄第28?45行
「貼り合わせウェーハをマウントプレートに貼着したままSOIウェーハの厚さを管理することができ、所望の厚さに到達した時点で研磨を終了させることができる。・・・これらの図において、ウェーハ研磨機のポリシングパッド1は透明体で、パッド駆動装置2により回転および昇降する駆動軸2aの先端に固着されている。マウントプレート3は、たとえばSiO_(2)からなる透明体で、前記ポリシングパッド1の上方にレーザ発振器4、波長変換装置5がそれぞれ配設されている。マウントプレート3の下方には光検出器6が設けられ、光検出器6の出力配線は制御装置7に接続されている。」
エ.第3ページ第4欄第5?29行
「貼り合わせウェーハ11は、2枚の単結晶Siウェーハを絶縁層SiO_(2)を介して貼り合わせたいわゆるSOI基板で、直接接着技術によって形成される貼り合わせ型SOI基板の製造工程に従って、素子形成層の所定の厚さ近くまでSi単結晶層を研磨したものである。・・・レーザ発振器4によって発振されたレーザ光は、波長変換装置5により所定の波長λすなわちSOIウェーハの目標厚さをt1 としたとき、λ=t1 となるように変換された後、ポリシングパッド1とスラリー10とを透過して貼り合わせウェーハ11に全反射角θで入射される。・・・t=λになると、それまで上部Si層11aの上面で全反射していた光の一部が上部Si層11aを透過し、更にSiO_(2)層11b、下部Si層11c、ワックス層12、マウントプレート3を透過してマウントプレート3の下方に進む。光検出器6はこの透過光を検出すると制御装置7に信号を出力し、制御装置7はパッド駆動装置2に研磨終了指令信号を送る」

ここで、被請求人は、甲第22号証における「ポリシングパッド」は、「ポリシングパッド」と称しているが、以下の理由から「ラッピング用プラテン」であると主張している。
すなわち、甲第22号証の上記ウ、図1より、甲第22号証のポリシングパッドは、回転、昇降する駆動軸の先端に固着され、一体物であるから、ポリシングパッドは剛性を有する必要がある。してみると、甲第22号証のポリシングパッドは、「厚さ数mmの布状であり、プラテンに固定されて用いられるもの」という、CMP用パッドの一般的定義に該当せず、剛性を有する研磨部材で研磨を行うという作用からみて、むしろラッピング用プラテンである。

しかしながら、以下(ア)?(エ)の理由により、被請求人の主張は採用できない。
(ア)「ポリシング」と「ラッピング」は、共に研磨の一種であるが、被請求人の意見書第26?36ページにみられるごとく、研磨精度、パッドの有無等により、区別されることが技術常識であり、当業者が「ラッピング」を「ポリシング」と誤用するとは考えにくいこと。
(イ)「パッド」を表面に貼付したプラテンを、その機能の面から、プラテンを含めて「パッド」と称することは、乙第6号証(「CMP技術体系」精密工学会)の図1、図10、当審で発見した特開平1-306172号公報より、ありうると認められるのに対し、プラテンのみでパッドを有さないものを「パッド」と称することは考えにくいこと。なお、甲第22号証に、「ポリシングパッド」が「一体物」と明記されているものではない。
(ウ)甲第22号証の「ポリシングパッド」を「ポリシング」用の「パッド」が表面に貼付されたプラテンと解した場合、甲第22号証において、特に矛盾は生じないこと。例えば、被請求人が主張する「所望の厚さ」のための「研磨」が、「ポリシング」を意味しないとまでは認められない。
(エ)上記エより、甲第22号証の研磨対象である貼り合わせウェーハは、既に「素子形成層の所定の厚さ近くまでSi単結晶層を研磨したもの」であるから、「ラッピング」よりも高精度の「ポリシング」を行う蓋然性が高いと考えられること。

また、被請求人は、甲第22号証の「パッド」がポリマーであるとすると、屈折率を利用した検出は不可能であるから、この点からも、この「パッド」はガラスであり、「ラッピング用プラテン」である旨、主張する。

しかしながら、以下(オ)?(キ)の理由により、被請求人の主張は採用できない。
(オ)甲第22号証出願当時、透明なポリシングパッドが、甲第27号証(特開昭61-76260号公報)、甲第28号証(特開昭63-134162号公報)、甲第29号証(特開平5-102113号公報)に示されるごとく周知であったこと。
(カ)甲第22号証には「パッド」の材質についての記載はないから、かかる「パッド」が、たとえポリマーではないとしても、直ちに「ガラス」であると認めることはできないこと。
(キ)甲第13号証にみられるごとく、光を利用したウエハの研磨終端検出においては、「屈折率」以外の光の性質を利用するものが既知であるから、屈折率以外の光の性質を利用するものを含む上位概念の技術思想としての認定が可能であること。

以上から、甲第22号証には、以下の発明が記載されている(以下「甲22発明」という。)
「貼り合わせウェーハをマウントプレートに貼着し、ポリシングパッドによる研磨中に使用する終点検出方法であって、ポリシングパッド、ポリシングパッドが貼付されたプラテン、マウントプレートを透明体とし、プラテン側からマウントプレート側へ光を照射するもの。」

(3)甲第16号証
本件出願の原出願の優先日前に頒布された刊行物である甲第16号証(特開平5-80201号公報)には、以下の記載がある。

ア.第2ページ第1欄第2?7行
「二官能基以上のポリイソシアナートと、硫黄原子を有するポリオール化合物が一種以上存在し、しかもその場合硫黄原子含有量が少なくとも20重量%以上のポリオールとを、-NCO基/-OH基=0.5?1.5モルの比率で反応させて得られる硫黄原子含有ポリウレタン系プラスチックレンズ。」
イ.第3ページ第4欄第6?12行
「このようにして得られる本発明に係わるポリウレタン系プラスチックレンズは・・・次のような特徴を有している。
1.強靱なプラスチックレンズが得られる。
2.無色透明なプラスチックレンズが得られる。」

以上から、甲第16号証には、以下の発明が記載されている(以下「甲16発明」という。)
「透明なポリウレタン系プラスチックレンズ。」

3.本件発明1についての対比・判断
(1)対比
本件発明1と甲13発明とを対比する。
甲13発明の「研磨布」は本件発明1の「研磨パッド」に相当する。同様に「光」は「光ビーム」に、「ウエハ研磨面」は「ウエハ表面」に、それぞれ相当する。
また、甲13発明の「研磨布内に配される前記透明窓材を通して」と、本件発明1の「研磨パッド内の前記ウィンドウを通して」とは、「研磨パッド部分を光が通り」である限りにおいて一致する。

したがって、両者は以下の点で一致する。
「ウエハの研磨の最中に使用する終点検出方法であって、前記方法は、
研磨表面を有する研磨パッドで前記ウエハを研磨するステップであり、ここで、
前記研磨パッド部分を光が通り、検出光ビームを研磨されるウエハのウエハ表面に透過するステップと、
前記ウエハ表面で反射され、前記研磨パッドを通過した検出光ビームの反射光を受けるステップと、
前記ウエハ表面で反射された検出光ビームの反射光を使用して、研磨終点を決定するステップと
を含む方法。」

そして、以下の点で相違する。
(相違点1)研磨に関し、本件発明1はCMP(化学機械研磨)であるが、甲13発明は不明である点。
(相違点2)研磨パッド部分を光が通ることに関し、
本件発明1は、研磨パッドが上面及び下面を有する中実な透明物質のウィンドウを有し、前記ウィンドウは、前記研磨パッドの一部であって、光ビームに対して少なくとも部分的に透過性を有する、前記研磨パッドの前記一部を備え、又は
前記ウィンドウは、前記パッド内に形成されたプラグであって、光ビームに対して部分的に透過性を有するプラグを備える
ものであるが、
甲13発明は、透明窓材が定盤の貫通孔に嵌め込まれており、その結果、研磨パッド窓内に透明窓材が配されるものである点。

(2)判断
相違点1について検討する。
甲13発明における研磨が実質的にCMPであることは、被請求人が平成18年12月7日付け意見書の第3ページで認めており、これに関し、請求人、被請求人間に争いはない。
したがって、この点に、実質的な相違はない。
仮に、甲13発明における研磨がCMP(化学機械研磨)でなく、機械研磨作用のみであるとしても、化学研磨作用が生じるか否かが、光を利用したウエハの終端検出に影響を与えるものではないから、単に研磨をより特定したものにすぎず、この点に特許性は認められない。

相違点2について検討する。
甲22発明は、研磨パッドに光を透過させてウエハの終端検出を行うものであり、甲13発明と、ウエハの終端検出という同一技術分野に属するものである。
甲13発明は、研磨パッドが光を透過しないものであることを前提に、研磨パッドに窓を形成し、その窓から研磨液の漏れを防ぐために、透明窓材を定盤の貫通孔に嵌め込んだものであり、検出のための装置の製造に相応の工数を必要とするものである。
してみると、甲13発明を前提に、甲22発明に接した当業者は、光を透過させるパッドによれば、研磨パッドに窓を形成すること、透明窓材を定盤の貫通孔に嵌め込むことという装置の製造上の工数が不要となり、製造効率が向上することを容易に理解できることが、明らかである。
したがって、甲13発明に甲22発明を適用し、本件発明1の相違点2に係る事項とすることに困難性は認められない。

また、これら相違点を総合しても、格別の作用効果が生じるとも認められない。
よって、本件発明1は、甲13発明、甲22発明に基づき、当業者が容易に発明をすることができたものである。

なお、仮に、甲第22号証の「パッド」が、被請求人の主張するとおりガラスであり、「ラッピング用プラテン」であったとすると、甲第22号証には、以下の発明が記載されていることとなる。
「貼り合わせウェーハをマウントプレートに貼着し、ラッピング用プラテンによる研磨中に使用する終点検出方法であって、研磨する側の部材であるラッピング用プラテン、ウエハが貼着される部材であるマウントプレートの両者を透明体とし、プラテン側からマウントプレート側へ光を照射するもの。」
かかる技術思想たる発明を踏まえると、上記同様、製造効率向上の観点から、甲13発明の「研磨する側の部材」である研磨パッドを、光を透過するものとすることに困難性は認められない。
したがって、被請求人の主張を採用したとしても、本件発明1の進歩性の判断に影響はない。

4.本件発明2についての対比・判断
本件発明2と甲13発明とを対比すると、両者は、「本件発明1」における一致点、相違点に加え、以下の点で相違する。
(相違点3)研磨パッドに関し、本件発明2はポリウレタンから作られたウインドウを有するものであるが、甲13発明は不明である点。

相違点3について検討する。
ポリウレタンからなる研磨パッドそれ自体は周知であり、透明なポリウレタンも甲第16号証のとおり、既知のものである。
してみると、光を通過させる必要のある研磨パッドのウインドウをポリウレタンとすることは、設計的事項にすぎない。
よって、本件発明2は、甲13発明、甲22発明、甲16発明、及び周知技術に基づき、当業者が容易に発明をすることができたものである。

5.本件発明3についての対比・判断
本件発明3と甲13発明とを対比すると、両者は、「本件発明2」における一致点、相違点に加え、以下の点で相違する。
(相違点4)研磨パッドに関し、本件発明3は添加物を有するポリウレタンを備える非透過性部分を有するものであるが、甲13発明は不明である点。

相違点4について検討する。
研磨パッドにおいて、光を透過する必要のあるウインドウ以外の材質については、「光を利用した終端検出」との関連性は薄いことから、添加物を加えるか否かは、当業者が適宜選択すべき設計的事項にすぎない。
よって、本件発明3は、甲13発明、甲22発明、甲16発明、及び周知技術に基づき、当業者が容易に発明をすることができたものである。

6.本件発明4についての対比・判断
本件発明4と甲13発明とを対比すると、両者は、「本件発明1」における一致点、相違点に加え、以下の点で相違する。
(相違点5)研磨パッドに関し、本件発明4は、ウインドウが上面を有し、研磨表面とウインドウ上面とは同一表面上にあるものであるが、甲13発明は不明である点。

相違点5について検討する。
甲13発明に甲22発明を適用したものにおいては、ウインドウはパッドの一部であるから、ウインドウが上面を有することは明らかであり、また、特段の事情のない限り、研磨表面とウインドウ上面とを同一平面とすることが自然である。すなわち、この点は、当然考慮すべき設計的事項にすぎない。
よって、本件発明4は、甲13発明、甲22発明に基づき、当業者が容易に発明をすることができたものである。

7.本件発明5についての対比・判断
本件発明5と甲13発明とを対比すると、両者は、「本件発明1」における一致点、相違点1を有し、相違点2に代え以下の相違点6を有する。
(相違点6)研磨パッド部分を光が通ることに関し、
本件発明5は、研磨パッドが上面及び下面を有する中実な透明物質のウィンドウを有し、前記ウィンドウは、前記研磨パッドの一部であって、光ビームに対して少なくとも部分的に透過性を有する、前記研磨パッドの前記一部を備え、又は
前記ウィンドウは、前記パッド内に形成されたプラグであって、光ビームに対して部分的に透過性を有するプラグを備え、
前記研磨パッドの底面は、前記ウィンドウに調心され、かつ前記ウィンドウに伸びる取り除かれた部分を含む
ものであるが、
甲13発明は、透明窓材が定盤の貫通孔に嵌め込まれており、その結果、研磨パッド窓内に透明窓材が配されるものである点。

相違点6について検討する。
甲22発明は、研磨パッドに光を透過させてウエハの終端検出を行うものであり、甲13発明と、ウエハの終端検出という同一技術分野に属するものである。
甲13発明は、研磨パッドが光を透過しないものであることを前提に、研磨パッドに窓、すなわち取り除かれた部分を形成し、その取り除かれた部分から研磨液の漏れを防ぐために、透明窓材を定盤の貫通孔に嵌め込んだものであり、検出のための装置の製造に相応の工数を必要とするものである。
してみると、甲13発明を前提に、甲22発明に接した当業者は、透明窓材に代えて、光を透過させるパッドでも良いことを容易に予測しうることが明らかである。
したがって、甲13発明に甲22発明を適用し、適用に際しては、光が透過する必要がある部分であるウインドウであるプラグのみ透明とし、本件発明5の相違点6に係る事項とすることに困難性は認められない。
よって、本件発明5は、甲13発明、甲22発明に基づき、当業者が容易に発明をすることができたものである。

8.本件発明6?7についての対比・判断
本件発明7と甲13発明とを対比すると、両者は、「本件発明1」における一致点、相違点に加え、以下の点で、一応相違する。
(相違点7)研磨パッドに関し、本件発明7は研磨面を有する第1の層と、研磨面と反対側の第2の層とを含み、プラグが第1の層内に位置するものであるが、甲13発明は不明である点。

相違点7について検討する。
研磨パッドは、研磨面である第1の層と、その反対側の第2の層とを当然有するものであるから、この点は、実質的には相違点ではない。
また、プラグが第1の層内に位置する点については、上記相違点6についての検討に基づき、甲13発明に甲22発明を適用した場合、当然、プラグが第1の層内に位置することとなる。
したがって、本件発明7は、甲13発明、甲22発明に基づき、当業者が容易に発明をすることができたものである。

また、本件発明6は、本件発明7の発明特定事項の一部を欠くものであるから、同様の理由により、本件発明6は、甲13発明、甲22発明に基づき、当業者が容易に発明をすることができたものである。

9.本件発明8についての対比・判断
本件発明8と甲13発明とを対比すると、両者は、「本件発明1」における一致点、相違点に加え、以下の点で相違する。
(相違点8)ウインドウに関し、本件発明8は完全に研磨表面と研磨パッドの底面の間に配置されるものであるが、甲13発明は不明である点。

相違点8について検討する。
ウインドウは、光を透過されるためのものであるから、その機能からみて、研磨表面と研磨パッドの底面の間から突出することは、不自然である。
すなわち、甲13発明に甲22発明を適用したものにおいては、当然、ウインドウが完全に研磨表面と研磨パッドの底面の間に配置されることとなるから、この点は、当然考慮すべき設計的事項にすぎない。
よって、本件発明8は、甲13発明、甲22発明に基づき、当業者が容易に発明をすることができたものである。

10.本件発明9?10についての対比・判断
本件発明10と甲13発明とを対比すると、両者は、「本件発明1」における一致点、相違点に加え、以下の点で相違する。
(相違点9)本件発明10は反射光を使用するステップが、周期的な干渉信号によって現れるサイクルの数を計数するものであるが、甲13発明は不明である点。

相違点9について検討する。
反射光を、周期的な干渉信号によって現れるサイクルの数を計数することは、甲第8号証(学会論文)、甲第9号証(「日経エレクトロニクス」論文)にみられるごとく周知である。
よって、本件発明10は、甲13発明、甲22発明、及び周知技術に基づき、当業者が容易に発明をすることができたものである。

また、本件発明9は、本件発明10の発明特定事項の一部を欠くものであるから、同様の理由により、本件発明9は、甲13発明、甲22発明、及び周知技術に基づき、当業者が容易に発明をすることができたものである。

11.本件発明11?20についての対比・判断
本件発明11?20は「システム」であり、それぞれ、本件発明1?10の「方法」を「システム」に変えたものに相当する。
両者は、実質的にカテゴリーの差にすぎないから、本件発明11?20についても、本件発明1?10と同様の理由により、当業者が容易に発明をすることができたものである。

第7.特許請求の範囲の記載要件違反についての当審の判断
第6で検討したとおり、本件発明1?20は、当業者が容易に発明をすることができたものであるから、無効とされるべきものである。
よって、他の理由については、必ずしも判断する必要はないが、紛争の早期解決の観点から、上記第3.1.の点について、一応、判断を示す。

「レーザービーム」、「コリメートされた光」以外の光であっても、精度は別にして、終端検出が可能であることは、請求人、被請求人間に争いはない(「口頭審理調書」参照)。
したがって、請求項1ないし20の「光」を、一実施形態にすぎない「レーザービーム」、「コリメートされた光」と特定すべき理由はない。

第8.明細書の記載要件違反についての当審の判断
前記のとおり、明細書の記載要件違反についても、必ずしも判断する必要はないが、上記第3.2.の(1)?(6)について、一応、判断する。

(1)研磨パッドについて
請求人は、EX2000又はIC1000なる特定のパッドが、入手しえないこと、これらが光透過性を有さないことから、発明の実施ができないと主張している。
しかし、これら特定のパッドは、あくまでパッドの一つの例にすぎないから、特定のパッドが、入手しえない、あるいは、光透過性を有さないことをもって、直ちに発明の実施ができないとまでは、認められない。

(2)?(6)について
これらは、いずれも終端を検出するための光の処理に関するものである。
ところで、本件発明1ないし20は、被請求人が意見書第49ページで主張するごとく、「研磨パッド」に特徴があるものである。
終端を検出するための光の処理については、甲第13号証、乙第23号証(特開平4-255218号公報)に詳細な記載がないことからみても、既知の技術であったと認められる。
してみると、終端を検出するための光の処理に関し、不明確な記載があったとしても、既知の技術を考慮することで、発明の実施をすることができるものと認められる。

上記のとおり(2)?(6)を個々に検討する必要性はないが、以下のとおり、一応検討したとしても、請求人の主張は採用できない。
一般論として、ある特定の場合に、実施しえない可能性があるとしても、発明が実施できないとまでは言えないことに留意する必要がある。

(2)図9、図10について
本件発明のウインドウは、研磨すべきウエハと接触可能であるから、スラリーの影響はほとんどないと認められる。また、図面は、補助的な性質のものであるから、理解を容易にする程度で十分であり、時間の周期の一致が求められるものではない。
乙1号証(特表平11-512977号公報)、乙第28号証(特開2005-340679号公報)も、このことを示唆している。
(3)図13について
本件明細書の段落0045?0047、乙第6号証の第263ページの記載、及び被請求人の意見書第68?76ページの説明によれば、不要な成分は除去可能であるから、検出は可能である。
(4)段落0016について
そもそもフィルタは、目的に応じて適宜選択されるべきものであるところ、段落0047?0048の記載、及び被請求人の意見書第76?78ページの説明を踏まえれば、実施できないとまでは認められない。
(5)均一性の尺度について
段落0057の記載、及び被請求人の意見書第78?83ページの説明を踏まえれば、実施できないとまでは認められない。
(6)図16のデータについて
特許図面は、補助的な性質のものにすぎず、各軸の単位が必須なものではない。

第9.むすび
本件発明1ないし20に係る明細書、図面の記載は、特許法第36条に規定する要件を満たすものである。
しかしながら、本件発明1ないし20は、本件出願の原出願の優先日前に頒布された刊行物に記載された発明に基づいて当業者が容易に発明をすることができたものであるから、特許法第29条第2項の規定により特許を受けることができない。
したがって、本件発明1ないし20は、特許法第123条第1項第2号に該当するので、無効とされるべきである。
審判費用については、特許法第169条第2項の規定で準用する民事訴訟法第61条の規定により、被請求人が負担すべきものとする。
よって、結論のとおり審決する。
 
発明の名称 (54)【発明の名称】
終点検出方法およびシステム
(57)【特許請求の範囲】
【請求項1】CMPによるウエハの研磨の最中に使用する終点検出方法であって、前記方法は、
研磨表面、及び上面及び下面を有する中実な透明物質のウィンドウを有する研磨パッドで前記ウエハを研磨するステップであり、ここで、
(i)前記ウィンドウは、前記研磨パッドの一部であって、光ビームに対して少なくとも部分的に透過性を有する、前記研磨パッドの前記一部を備え、又は
(ii)前記ウィンドウは、前記パッド内に形成されたプラグであって、光ビームに対して部分的に透過性を有するプラグを備える、ステップと、
前記研磨パッド内の前記ウィンドウを通して、検出光ビームを研磨されるウエハのウエハ表面に透過するステップと、
前記ウエハ表面で反射され、前記研磨パッド内の前記ウィンドウを通過した検出光ビームの反射光を受けるステップと、
前記ウエハ表面で反射された検出光ビームの反射光を使用して、研磨終点を決定するステップと
を含む方法。
【請求項2】前記研磨するステップは、ポリウレタンから作られたウィンドウを有する研磨パッドで研磨するステップを含む、請求項1に記載の方法。
【請求項3】前記研磨するステップは、添加物を有するポリウレタンを備える非透過性部分を有する研磨パッドで研磨するステップを含む、請求項2に記載の方法。
【請求項4】前記ウィンドウは上面を有し、前記研磨表面と前記上面とは同一平面上にある、請求項1に記載の方法。
【請求項5】前記研磨パッドの底面は、前記ウィンドウに調心され、かつ前記ウィンドウに伸びる取り除かれた部分を含む、請求項1に記載の方法。
【請求項6】研磨パッドは、研磨面を有する第1の層と、研磨面と反対側の第2の層とを含む、請求項1に記載の方法。
【請求項7】前記プラグは、前記第1の層内に位置する、請求項6に記載の方法。
【請求項8】前記ウィンドウは、完全に前記研磨表面と前記研磨パッドの底面との間に配置される、請求項1に記載の方法。
【請求項9】前記反射光を使用するステップは、周期的な干渉信号を検出するステップを含む、請求項1に記載の方法。
【請求項10】前記反射光を使用するステップは、周期的な干渉信号によって現れるサイクルの数を計数するステップを含む、請求項9に記載の方法。
【請求項11】ウエハのCMP研磨装置と共に使用する終点検出システムであって、前記システムは、
研磨表面、及び上面及び下面を有する中実な透明物質のウィンドウを有する研磨パッドであり、ここで、
(i)前記ウィンドウは、前記研磨パッドの一部であって、光ビームに対して少なくとも部分的に透過性を有する、前記研磨パッドの前記一部を備え、又は
(ii)前記ウィンドウは、前記パッド内に形成されたプラグであって、光ビームに対して部分的に透過性を有するプラグを備える、研磨パッドと、
前記研磨パッド内の前記ウィンドウを通して、検出光ビームを研磨されるウエハのウエハ表面に透過する光源と、
前記ウエハ表面で反射され、前記研磨パッド内の前記ウィンドウを通過した検出光ビームの反射光を受け、前記ウエハ表面で反射された検出光ビームの反射光を使用して、研磨終点を決定する検出器と
を備えるシステム。
【請求項12】前記ウィンドウは、ポリウレタンから作られている、請求項11に記載のシステム。
【請求項13】前記研磨パッドは、添加物を有するポリウレタンを備える非透過性部分を有する、請求項12に記載のシステム。
【請求項14】前記ウィンドウは上面を有し、前記研磨表面と前記上面とは同一平面上にある、請求項11に記載のシステム。
【請求項15】前記研磨パッドの底面は、前記ウィンドウに調心され、かつ前記ウィンドウに伸びる取り除かれた部分を含む、請求項11に記載のシステム。
【請求項16】研磨パッドは、研磨面を有する第1の層と、研磨面と反対側の第2の層とを含む、請求項11に記載のシステム。
【請求項17】前記プラグは、前記第1の層内に位置する、請求項16に記載のシステム。
【請求項18】前記ウィンドウは、完全に前記研磨表面と前記研磨パッドの底面との間に配置される、請求項11に記載のシステム。
【請求項19】前記検出器は、周期的な干渉信号を検出する、請求項11に記載のシステム。
【請求項20】前記検出器は、周期的な干渉信号によって現れるサイクルの数を計数する、請求項19に記載のシステム。
【発明の詳細な説明】
【0001】
【発明の属する技術分野】
本発明は、半導体の製造に関し、特に、ケミカルメカニカルポリシング(chemical mechanical polishing:CMP)及びCMPプロセス中のインシチュウ(in-situ)終点検出に関する。
【0002】
【従来の技術】
現代の半導体集積回路(IC)製造のプロセスにおいては、先に形成された層や構造の上に様々な材料の層や構造を形成することが必要となる。しかし、先に形成される際に、プロセス中のウエハの上面の局所構造において、隆起物、高低差のある部分、谷間、溝、及び/又はその他の表面の不均一さが現れ、非常に不均一となることがしばしばである。次の層を形成する際に、これらの不均一さが問題を生じさせる。例えば、先に形成された層の上に細かい幾何的構造をもつフォトリソグラフィのパターンを転写する場合は、フォーカスを非常に浅くする必要がある。従って、表面は平坦で平面的であることが不可欠であり、そうでなければ、パターンの中でフォーカスが合っている部分とそうでない部分とが生じることになる。実際、表面の変動は、25x25mmのダイの上に1000オングストローム未満のオーダーである事が好ましい。更に、主要な処理ステップにおいてこの不均一性をならしておかなければ、ウエハ表面の局所構造が更に不均一となり、その先の処理において積層を重ねる際に更に問題が生じることとなる。用いるダイの種類や幾何的なサイズによっては、この表面の不均一性が、収率やデバイスの性能を悪化させる。従って、IC構造体に何等かの平坦化(プラナリゼーション(planarization))やレベリング(leveling)を行うことが望ましい。実際、多くの高密度ICの製造技術では、製造プロセスにおける重要な局面において、ウエハ表面を平坦化する方法を使用できるようになっている。
【0003】
半導体ウエハの平坦化又は局所構造の除去を実現する方法の1つに、ケミカルメカニカルポリシング(CMP)がある。一般的には、ケミカルメカニカルポリシング(CMP)プロセスは、圧力を制御した状態で、回転する研磨プラーテンに対してウエハを保持し又は回転させる。図1に示されるように、典型的なCMP装置10は、研磨プラーテン16に対してウエハ14を保持するための研磨ヘッド12を有している。研磨プラーテン16は、パッド18によって覆われている。このパッド18は典型的には裏張り層20を有し、これは、ウエハ14を研磨するためにケミカルポリシングスラリと共に用いられるカバー層22とプラーテンとの間のインターフェースとなっている。しかし、パッドの中には、カバー層のみを有し裏張り層を有していないものもある。カバー層22は、通例は、オープンセル発泡ウレタン(例えばRodel IC1000)又はグルーブのある表面を有するポリウレタンシート(例えばRodel EX2000)である。このパッド材料は、研磨剤と化学品とを含有するケミカルポリシングスラリによってウェットな状態となっている。典型的なケミカルポリシングスラリの1例は、KOH(水酸化カリウム)とヒュームドシリカ粒子(fumed-silica particles)とを含有している。プラーテンは、通常は自身の中心軸24の回りに回転している。更に、通常は研磨ヘッドが自身の中心軸26の回りに回転し、平行移動アーム28を介してプラーテンの表面の端から端まで平行移動する。図1には研磨ヘッドが1つしか示されていないが、CMP装置には、典型的には、このようなヘッドが1つ以上研磨プラーテンの周方向に間隔をおいて配置される。
【0004】
ある部分が所望の平面度又は相対厚さまで平坦化されたかどうかを決定することに、CMPプロセスの最中に生じる特有の問題がある。一般に、所望の表面特性や平坦状態に達したときを検出する必要がある。このことは、様々な方法によって実施されてきた。当初は、CMPプロセスの最中にウエハの性質をモニタすることは不可能であった。典型的には、ウエハをCMP装置から取り出して別の場所で評価していた。ウエハが所期のスペックに適合していなければ、CMP装置に再び戻されて、再処理がなされていた。これは、時間がかかり、しかも人手を要する手法である。あるいは、材料が過剰に除去されてから初めて試験の結果がわかることもあり、その部分を使用不可能にしてしまうこともあった。従って、従来技術においては、CMPプロセスの最中にインシチュウで、所望の表面性質又は厚さが達せられたときを検出することが可能な装置が必要であった。
【0005】
【発明が解決しようとする課題】
CMPプロセスの最中に終点をインシチュウに検出するために、様々な装置や方法が開発されてきた。例えば、超音波の使用と結び付いた装置及び方法や、機械的抵抗、電気的インピーダンスないしウエハ表面温度と結び付いた装置及び方法が用いられてきた。これらの装置や方法は、ウエハやその層の厚さを決定することに依拠し、厚さの変化をモニタすることによりプロセスの終点を確定することに依拠している。ウエハの表面の層が薄くなるようなケースでは、厚さの変化を用いて、表面の層がいつ所望の深さになったかを検出する。また、パターニングを有する表面が不均一なウエハを平坦化するケースでは、厚さの変化をモニタし、表面の不均一度のおよその深さを知ることにより、終点が決定される。厚さの変化が不均一度の深さと等しくなったときに、CMPプロセスが終了する。これらの装置及び方法は、意図していた用途に対してそこそこ良好であったが、更に正確に終点の決定をすることができるシステムがなお必要である。
【0006】
【課題を解決するための手段】
本発明は、研磨プロセスに関して正確性を向上し更に有用な情報を与えるために用いる事ができる終点の検出器及び方法を目指すものである。本発明の装置及び方法は、CMPプロセスの最中に、除去された材料の厚さ又はウエハ表面の平坦度をインシチュウに決定するための、干渉による技術を採用する。
【0007】
具体的には、研磨パッドが上についた回転可能な研磨プラーテンと、ウエハを研磨パッドに対して保持するための回転可能な研磨ヘッドと、終点検出器とを用いるケミカルメカニカルポリシング(CMP)の装置及び方法によって、前述の目的が達せられる。研磨パッドは裏張り層を有しており、この裏張り層は、ケミカルスラリによってウェットな状態となっておりウエハとのインターフェースの役割をするカバー層と、プラーテンとの、インターフェースの役目をする。ウエハは、酸化物層の下にある半導体基板から構成されている。そして、終点検出器は、レーザー光(レーザービーム)をウエハに向けて発する事が可能で且つ反射してくる光を検出することが可能なレーザー干渉計と、プラーテンを貫通して形成されているホール(穴)に近接して配置されるウィンドウとを有している。このウィンドウは、少なくともウエハがウィンドウの上方にある間は、ウエハに入射するレーザー光のための通路の役割を果たす。
【0008】
このウィンドウは、幾つかの形態が可能である。これらの中には、プラーテンホールの内部に取り付けられるインサートが挙げられる。このインサートはレーザー光に対し透過性の高い、例えばクオーツ等の材料で出来ている。このウィンドウの構成では、インサートの上面は、プラーテンの表面よりも上に突き出ており、また、プラーテンから遠ざかるように延長しているため、ウエハがパッドに対して保持されているときは常に、インサートの上面とウエハとの間にギャップが形成されている。インサートをウエハに接触させずに、このギャップを出来るだけ小さくする方が好ましい。あるいは、ウィンドウは、隣接する裏張り層がそこから取り除かれた後の研磨パッドの一部分の形態であってもよい。ポリウレタンカバー層は少なくとも一部分がレーザー光に対して透過性を有しているため、この形態が可能である。最後に、ウィンドウは、パッドのカバー層に形成されたプラグの形態で裏張り層を有していない形態であってもよい。このプラグは、好ましくは、レーザー光に対して透過性の高いポリウレタン材料製である。
【0009】
本発明の1つの具体例では、プラーテンを貫くホール(穴)とウィンドウとは、円形である。別の具体例では、ホールとウィンドウとは円弧形である。この円弧形のウィンドウは、プラーテンの回転の中心と一致する原点からある半径をもって構成される。本発明のいくつかの具体例も、ウエハに入射している所のビームの直径が、用いている波長に対して可能な限り最小の直径に比べて非常に大きいレーザー光を有している。
【0010】
また、CMP装置は、ウィンドウがウエハに近接したときを感知する位置センサを有していてもよい。これにより、レーザー干渉計によって発せられたレーザー光が障害なくウィンドウを通過しウエハに入射する事が可能となる。本発明の好ましい具体例では、係るセンサは、放射方向外側へ伸びるプラーテン外縁の部分に沿って取り付けられているフラグを有している。更に、プラーテンの外縁でシャシに取り付けられた光学的干渉タイプのセンサを有している。このセンサは光ビームを発することが可能であり、フラグによってこの光ビームが干渉されたときだけ発せられる信号を生じさせる。従って、レーザービームが障害なしにウィンドウを通りウエハへ入射できるときはいつでも、光ビームがフラグによって干渉されるような、プラーテン上の位置に、フラグは取り付けられる。
【0011】
更に、レーザー干渉計は、ウエハから反射してくる光が検出されるときは常に検出信号を発するための装置を有し、また、位置センサは、ウィンドウがウエハに近接しているときは常に感知信号を出力するための要素を有している。このことにより、データ取得装置が、位置センサからの感知信号の継続時間のための、レーザー干渉計からの検出信号をサンプリングする事が可能となる。そして、このデータ取得装置は、サンプリングされた検出信号を代表するデータ信号を出力するための要素を利用する。また、このデータ取得装置は、レーザー干渉計から所定の時間にわたってサンプリングされた検出信号を積分し、この検出信号をサンプリングして積分したものを代表するデータ信号を出力する要素を有している。プラーテンが一周する間に前述の所定のサンプリング時間が得られない場合は、別の区分的データサンプリング方法を利用してもよい。具体的には、あるサンプリング時間に対してプラーテンが完全に一周するそれぞれの一周の間にレーザー干渉計から出力される検出信号をサンプリングする方法を実行し、検出信号の各サンプルをサンプリング時間にわたって積分して各サンプルに対応する積分値を作り出し、そして、各積分値を保存するための、要素を、データ取得装置は有していてもよい。また、プラーテンが完全に一周するその各一周の後の累積サンプリング時間を計算し(この累積サンプリング時間が、検出信号の各サンプルに対するサンプリング時間の総和である場合)、この累積サンプリング時間を所望の最小サンプリング時間と比較し、そして、累積サンプリング時間が所定の最小サンプリング時間以上であった場合は保存された積分値を積分要素から総和を計算するための要素へと転送するための、別の要素を、データ取得装置は利用する。従って、前述の出力は、この総和の要素からの積分値の系列を表すデータ信号である。
【0012】
データ取得装置によるデータ信号の出力は、CMPプロセスの最中に酸化物層が薄くなるにつれて、ウエハの酸化物層の表面から反射されるレーザービームの部分とこの下のウエハ基板の表面から反射される部分との間で干渉が生じる事により、周期的なものである。従って、ブランク酸化物(blank oxide)ウエハの酸化物層を薄くするCMPプロセスの終点は、データ信号によって現れるサイクルの数を計数し、レーザービームの波長とウエハの酸化物層の反射係数とから出力信号の1サイクルの間に除去される材料の厚さを計算し、酸化物から除去されるべき材料の所望の厚さを、データ信号により現れるサイクルの数と1サイクルの間に除去される材料の厚さとの積を備えた除去厚さと比較し、この除去厚さが除去されるべき材料の所望の厚さ以上になったときにCMPを終了させるための、付加的な装置要素を用いて、決定することが可能である。あるいは、全サイクルを計数する代りに、サイクルの一部を計数してもよい。この手順は、サイクル全体に対してではなくサイクルの一部に対して除去されるべき厚さを決定すること以外は、ほぼ同じである。
【0013】
ブランク酸化物ウエハのCMP処理終点を決定する別の方法は、サイクルの所定の数又は1サイクルの所定の部分が終わるための要する時間を測定し、この測定された時間に除去された材料の厚さを計算し、材料の厚さを測定された時間で除して除去速度を算出し、酸化物層から除去されるべき材料の所望の厚さから材料の厚さを減じて残りの除去厚さを確定し、この残りの除去厚さを除去速度で除して残りのCMP時間を確立し、そして、この残りのCMP時間が経過した後CMPプロセスを終了させる、付加的な装置要素を用いる。
【0014】
更に、この残りのCMP時間は、材料除去速度の変化を補償するため、サイクルの前述の数が生じるたびに改められてもよい。このケースでは、この手順は、材料の厚さを確定するステップにおいてまず初期の繰り返しにおいて除去された厚さ全てを総和しこの累積厚さを所望の厚さから減じて残りの厚さの数値を決定する点を除いて、ほぼ同じである。
【0015】
しかし、ウエハが始めから不均一な表面局所構造を有するためCMPプロセスで平坦化されるべきである場合は、データ信号は、ウエハの表面がスムーズになった後でなければ周期性を有しない。このケースでは、ウエハが平坦化したことを決定することに対応するCMPプロセスの終点は、データ信号の周期な変化を検出し、検出要素がこの周期的な変化を検出したときにCMPプロセスを終了させる、付加的な装置要素を用いることにより得られる。好ましくは、この検出要素は、この変化の最初のほぼ1サイクル以内のデータ信号の周期的な変化を検出する事が可能である。
【0016】
条件によっては、パターニングされたウエハ上の構造体の上の膜厚を制御することが望ましい。この膜厚は、前述の平坦化によっていつも達成できるとは限らない。しかし、データ信号をフィルタにかけて、特定の膜厚が望ましい膜の下の特定の構造体や同様のサイズが与えられた構造体のグループに関する周波数以外の周波数をカットすることにより、この制御を得ることは充分可能である。本質的には、信号が一旦フィルタにかけられれば、ブランク酸化物のCMP終点を決定するための前述したあらゆる方法を、パターニングされたウエハに対して用いることが可能である。
【0017】
また、データ取得装置により出力されるデータ信号を、進行中のCMPプロセスの終点の決定以外の事項に用いても有利である。従って、別の特徴においては、本発明は、前記の層を研磨している最中に基板上の層の均一性を測定するインシチュウの方法である。この方法は、以下のステップを備えている:研磨中にレーザービームを層へ向けるステップと;光ビームの基板からの反射されることにより発生する干渉信号をモニタするステップと;この干渉信号から均一性の尺度(measure)を計算するステップと。
【0018】
好ましい具体例では、この計算するステップは、干渉信号から特性信号を抽出する工程と;この抽出された特性信号から均一性の尺度を計算する工程とを備える。また、この方法は、均一性の尺度を参考値と比較するステップと、この均一性の尺度が、参考値に対して所定の量以上広がったときに警告を発するステップとを備えていてもよい。干渉信号は低周波成分を有し、抽出のステップはこの低周波数成分の第1の特性を測定する工程と;第1の特性から、抽出情報を誘導する工程とを有している。実際は、干渉計の信号の方も高周波成分を有しており、抽出のステップも、この高周波成分の第2の特性を測定する工程と、前記の第1の特性及び第2の特性から、抽出情報を誘導する工程とを備えている。更に具体的には、第1の特性及び第2の特性はそれぞれ、高周波数信号及び低周波数信号の振幅であり、誘導する工程には、この低周波信号と高周波信号の比を計算する操作を有している。
【0019】
概説的には、別の特徴として、本発明は、表面上に形成された層を有する基板を研磨するためのプロセスの特徴をインシチュウに決定するための方法である。この方法は、以下のステップを備える:研磨中に光ビームを層へ向けるステップと;基板から反射される光ビームによって発生される干渉信号をモニタするステップと;干渉信号からシグネチャ(signature)を抽出するステップと;抽出されたシグネチャを、研磨プロセスの所望の操作ポイントを代表する保存情報と比較するステップと;抽出されたシグネチャが保存情報から所定の量よりも大きく広がったときに警告信号を発するステップと。
【0020】
好ましい具体例には、以下の特徴部分が含まれる。この方法は、オペレータが視認するための視覚的ディスプレイ装置上に干渉信号を表示するステップを更に有している。更に、抽出のステップは、更に、干渉信号から研磨速度を決定する工程と;干渉信号から均一性の尺度を決定する工程とを備えている。比較するステップは研磨速度及び均一性の尺度を、保存された情報と比較する工程を有している。
【0021】
概説的に、また別の特徴として、本発明は、以下を備える基板研磨システムである:処理中は研磨パッドを保持しているプラーテンと;処理中はプラーテン上の研磨パッドに対して基板を保持する研磨ヘッドと;処理中は研磨されるべき基板の側部に向けられてそこに入射し、干渉計信号を発生させる、コリメートされた光ビーム(collimated light beam)を発生する事が可能な干渉計と;干渉信号から均一性の尺度を計算するようにプログラムされたデータプロセッサと。
【0022】
好ましい具体例では、研磨ヘッドとプラーテンとは、処理中に両者が回転するように、回転可能となっている。また、干渉計は、レーザー干渉計である。更に、データプロセッサも、干渉信号から特徴情報(feature information)を抽出するように;また、抽出された特徴信号から均一性の尺度を計算するように、プログラムされている。データプロセッサも、均一性の尺度と参考値と比較するように;また、均一性の尺度が参考値から所定の値広がったときに警告を発するように、プログラムされている。
【0023】
概説的に、更に別の特徴として、本発明は、以下を備える基板研磨装置である:処理中に研磨パッドを保持するプラーテンと;処理中にプラーテン上の研磨パッドに対して基板を保持する研磨ヘッドと;コリメートされた光ビームを発する事が可能な干渉計と。プラーテンは自身を貫通する通路を有し、干渉計は、光ビームに、研磨の操作の少なくとも一部の間にこの通路を通って基板に入射するような向きを与えるように配置される。また、この装置は、通路に対して調心されたウィンドウを有し、このウィンドウを通って光ビームが基板へ通過する。ウィンドウは、干渉計から到達する光ビームを受容する散乱面を有している。
【0024】
概説的に、また別の特徴として、本発明は、上述のケミカルメカニカルポリシングシステムにおいて用いるための研磨パッドである。この研磨パッドは、研磨面と;底面とを有している。研磨パッドの底面及び研磨面は、それらの内部に形成されたウィンドウを有している。このウィンドウは、干渉計からの光に対して透過性を有し、また、散乱性の底面を有している。
【0025】
ここに説明した利点に加えて、本発明のその他の目的や利点は、添付した図面と共に説明される詳細な説明から明らかになるであろう。
【0026】
【発明の実施の形態】
図2は、本発明の一つの具体例に従って変形されたCMP装置の一部を表している。プラーテン16にはホール(穴)30が形成され、このホールはプラーテンパッド18の上にある。研磨ヘッド12の平行移動的な動きに関係なく、プラーテンが回転している時間の一部の間、研磨ヘッド12によって保持されるウエハ14から見えるように、このホール30の位置が与えられる。レーザー干渉計32は、プラーテン16の下にあって、ホール30がウエハ14に近接した時には、レーザー干渉計32によって投影されるレーザービーム34がプラーテン16のホール30を通過してその上にあるウエハ14の表面に入射するような位置に、固定される。
【0027】
プラーテンホール30及びウエハ14の詳細な図(ウエハがプラーテンホール30の上にある場合の)が、図3(a)?(c)に示される。図3(a)に示されるように、プラーテンホール30は、ステップ状の直径を有し、ショルダ36を形成する。ショルダ36は、レーザービーム34のためのウィンドウとして機能するクオーツインサート38を有してこれを指示するために用いられる。プラーテン16とインサート38の間のインターフェースがシールされ、ウエハ14とインサート38の間の通り道を見つけようとするケミカルスラリ40の一部がプラーテン16の底部から漏出できないようにされている。クオーツインサート38は、プラーテン16の上面の上に突出し、部分的にプラーテンパッド18の中に入り込む。このインサート38の突出部は、インサート38の上面とウエハ14の表面との間のギャップを最小にする意図をもって置かれている。このギャップを最小にすることにより、このギャップに捉えられるスラリ40の量が最小になる。このことは有利なことであり、何故なら、スラリ40はそこを通り抜ける光を散乱させる傾向があり、レーザー干渉計32から発せられるレーザービームの強度を弱めてしまうからである。インサート38とウエハ14の間のスラリ40の層が薄くなるほど、レーザービーム34とウエハに反射される光の弱化が少なくなる。約1mmのギャップであれば、CMPプロセス中の弱化が受容される程度になると考えられる。しかし、このギャップは小さいほど好ましい。このギャップはできるだけ小さい方がよいが、CMPプロセス中はいつでもインサート38がウエハ14に接しないことを確保するべきである。本発明の実験的な具体例では、インサート38とウエハ14の間のギャップは、10mils(250μm)あれば、満足な結果を与える。
【0028】
図3(b)は、プラーテン16とパッド18の別の具体例である。この具体例では、クオーツインサートは排除され、パッド18には貫通穴は存在しない。その代わりに、プラーテン16のホール30の上の領域では、パッド18の裏張り層20(存在すれば)が除去された。このことにより、ウエハ14とプラーテン16の底部との間には、パッド18のポリウレタンカバー層22だけが残っている。カバー層22に用いられるポリウレタン材料が、レーザー干渉計32からのレーザービームを実質的に透過させるだろうことが、見出されている。従って、プラーテン30の上にあるカバー層22の一部が、レーザービーム34のためのウィンドウとして機能する。この別の構成は、大きな利点を有している。第1に、パッド18自身はウィンドウとして用いられているため、検出できる大きさのギャップは存在しない。従って、レーザービームの有害な散乱を生じさせるスラリ40はほとんど存在しない。この別の具体例のもう一つの利点は、パッドの消耗に関係しなくなることである。図3(a)の最初に説明した具体例では、クオーツインサートとウエハ14との間のギャップは出来るだけ小さくされていた。しかしパッド18は消耗するため、このギャップはまだ小さくなる。最後には、摩耗は大きくなり、インサート38がウエハ14に接触して損害を与える。図3(b)の別の具体例では、パッド18は、ウィンドウとして用いられているため、また、ウエハ14に接触するように設定されているため、パッド18の消耗による有害な効果はない。オープンセルのタイプのパッド及びグルーブを有する表面のタイプのパッドを用いた実験によれば、グルーブを有する表面のパッドの方がレーザービームの弱化が小さくなる結果が示されたことに注目すべきである。従って、このタイプのパッドを用いることが好ましい。
【0029】
パッドのカバー層に用いられるポリウレタン材料は、レーザービームに対して実質的に透過性を有しているものの、透過性を阻害する添加物を含有している。この問題点は、図3(c)に描かれている本発明の具体例において排除される。この具体例では、プラーテンホール30の上の領域における典型的なパッド材料は、ソリッドな(中空ではない)ポリウレタンプラグ42に置き換えられる。このプラグ42は、レーザービームのウィンドウとして機能し、パッド材料を包囲するグルーブ(又はオープンセル構造)を有しないポリウレタン材料製であり、透過性を阻害する添加物を含有していない。従って、プラグ42を通ることによるレーザービームの弱化は最小になる。好ましくは、プラグ42はパッドと一体で成形される。
【0030】
動作中は、本発明に従ったCMP装置は、レーザー干渉計からのレーザービームを用いて、ウエハの表面から除去された材料の量を決定するか、又は、表面が平坦化されたときを決定する。このプロセスの開始を、図4を参照して説明する。レーザー及びコリメータ44、ビームスプリッタ46、及び検出器48が、レーザー干渉計32の要素として描かれている。これが行われることにより、前述したCMP装置の動作が容易になる。更に、クオーツインサート38をウィンドウとして用いる図3(a)の具体例が、便宜のために示される。無論、ここに描かれた構成は1つの可能な配置であり、他の構成を用いてもよい。例えば、前述のウィンドウの構成の全てを用いることができ、また、レーザー干渉計32の別の具体例を用いることも可能である。代替できるレーザー干渉計の1つは、ウエハにある角度をもって入射するビームを発生させるレーザーを用いるものである。この具体例では、ウエハから反射される光が入射するような位置を検出器は与えられている。この代替的な具体例には、ビームスプリッタは必要ではない。
【0031】
図4に例示されるように、レーザー及びコリメータ44は、ビームスプリッタ46の下側部に入射する、コリメートされたレーザービーム34を発生させる。ビーム34の一部が、ビームスプリッタ46及びクオーツインサート38を通って進行していく。ビーム34のこの部分がインサートの下端に残れば、それはスラリ40を通って伝播し、ウエハ14の表面に入射する。図5に詳細に示されているように、ウエハ14は、シリコンとその上の酸化物層52(例えばSiO_(2))とを有する基板50を有している。
【0032】
ウエハ14に入射するビームの一部は、酸化物層52の表面で部分的に反射され、第1の反射ビーム54を形成する。しかし、光の一部は酸化物層52を通過して、その下の基板50に入射する伝送ビーム56を形成する。基板50に到達する伝送ビーム56から少なくとも一部お光が酸化物層52へ反射し返され、第2の反射ビーム58を形成する。第1の反射ビーム54と第2の反射ビーム58は、これらの位相の関係によって有益的にあるいは有害的に相互に作用し、位相関係が酸化物層52の厚さに本質的な関数である場合は、結合ビーム60を形成する。
【0033】
上述の具体例では、単一の酸化物層を有するシリコン基板を用いているが、この分野の通常の技術を有する者には、他の基板や他の酸化物層を用いても、この干渉のプロセスが生じることは認識されるだろう。重要な点は、入射するビームに対して、酸化物層が一部反射し一部透過し、基板が少なくとも一部反射することである。更に、この干渉のプロセスを、基板の上に複数の層を有するウエハに適用してもよい。再び、各層が部分的に反射性を有し部分的に透過性である場合は、その結果、干渉ビームが形成されるが、これは全ての層及び基板からの反射ビームの結合である。
【0034】
再び図4を参照すれば理解されるように、第1の反射ビーム54及び第2の反射ビーム58(図5)の結合である結合ビーム60は、スラリ40とインサート38を通って伝播し返し、ビームスプリッタ46の上部分に達する。ビームスプリッタ46は、結合ビーム60の一部を、検出器48の方へ向きを変える。
【0035】
プラーテン16は典型的には、CMPプロセスの最中は回転されるだろう。従って、プラーテンホール30は、自身が一周する間にウエハ14を1回だけ見えることになる。従って、ウエハ14にレーザービーム34が入射する時だけ、レーザー干渉計32からの検出信号をサンプリングすることが可能である。レーザービーム34がホール30を通って部分的にしか伝送されないときには検出信号はサンプリングされず、その理由は、ホールのエッジでプラーテン16の底部によって一部が干渉された場合は、信号に著しいノイズが発生するだろうからである。このことが発生することを防止するため、位置センサ装置が結合される。ホール効果、渦電流、光遮断器、又は音響センサ等の、あらゆる既知の近接センサを用いることが可能であるが、本発明の実験例には光遮断器のタイプのセンサが用いられ、以下に図面と共に説明する。図6には、本発明に従ったレーザー干渉計32を同期するための装置が示され、これには、光遮断器タイプのセンサ62(例えば、LED/フォトダイオードのペア)をCMP装置のシャシのある固定点上に載置され、プラーテン16の外周エッジの視界を有している。このタイプのセンサ62は、発した光ビームが遮断された時に活性化する。位置センサフラグ64が、プラーテン16の外縁に取り付けられている。フラグ64の取り付け位置及び長さは、レーザー干渉計32からのレーザービーム34が前述のウィンドウ構造体66を完全に通過して伝送されたときにだけ、センサの光信号を遮断する。例えば、図6に示されているように、センサ62は、プラーテン16の中心に関して、レーザー干渉計32の直径方向の反対側に載置されていてもよい。フラグ64は、プラーテン16において直径方向にウィンドウ構造体66の反対側の位置に取り付けられている。フラグ64の長さは、点線68によっておよそ決められるがフラグ64の正確な長さは、フラグ64がセンサ62によって感知されている全時間、レーザービームがプラーテン16に全く干渉されないことを確保するように、細かく調整されるべきである。この細かな調節により、位置センサのあらゆるノイズ又は不正確性、レーザー干渉計32の応答性等を補償する。センサ62が一旦活性化すれば、信号が発生し、これが、干渉計32からの検出信号をサンプリングすべき時を決定するために用いられる。ウエハがレーザービームから見える所にあるときにレーザー干渉計の信号をサンプリングするためにセンサ信号を用いることが可能な、データ取得システムは、従来技術においても知られており、本発明の新規な部分を構成しない。従って、ここにはその詳細は説明しない。しかし、適切なシステムを選択に対して考慮すべき事項はある。例えば、干渉計からの信号を所定の時間にわたって積分することが好ましい。この積分により、積分区間にわたり高周波ノイズが平均化されるため、信号-対-ノイズの比が改善される。このノイズは、様々な原因によるものであり、これには例えば、プラーテン及びウエハの回転による振動や、平坦化が不均等であることによるウエハ表面の変化等がある。上述の装置では、信号を積分するための時間として、プラーテンの1回転の間にどのくらいの長さをとることが可能かを、クオーツウィンドウの直径及びプラーテンの回転スピードが決定するだろう。しかし、しかし、状況によっては、このような時間は適当ではないかも知れない。例えば、許容できる信号-対-ノイズの比のために、積分時間を更に長くとることが必要な場合があるだろうし、あるいは、選択されたデータ取得システムに用いられるインターフェースの回路のために、1周の間にとれる時間よりも長い積分時間が最低でも必要な場合があるだろう。
【0036】
この問題に対する1つの解決策は、プラーテンホールをプラーテンの回転方向に沿って延長することである。換言すれば、ウィンドウ構造体66’(即ち、インサート、パッド、又はプラグ)は、図7に示されるように、円弧状の計状を有していてもよい。無論、フラグ64’は、長くなったウィンドウ構造体66’に適合するように拡大される。あるいは、ウィンドウは同じままであるが、レーザー干渉計が、ウィンドウの真下で回転プラーテンに据え付けられていてもよい。このケースでは、CMP装置は、プラーテンの下にある干渉計に適合するように改造する必要が有り、また、干渉計からの検出器信号の道筋をつけるように予め設定しておく必要がある。しかし、どちらの方法においてもその正味の結果は、プラーテンの各回転に対するデータ取得時間を長くするものである。
【0037】
プラーテンホール及びウィンドウを長くとることは有利である反面、プラーテンパッドの表面積を幾分か小さくしてしまう。従って、プラーテンが回転するその回転の一部の間にウィンドウの上にあるディスクの領域において、平坦化の速度が減少される。更に、プラーテンホール及びウィンドウの長さは、ウエハのエッジを越えてはならず、ウエハの平行移動位置に拘らず、ウィンドウがウエハのエッジを越えた場合は、データサンプリングが行われてはならない。従って、拡大したプラーテンホール及びウィンドウの長さは、あるいは、プラーテンに設置された干渉計がサンプリングできる時間は、研磨ヘッドのあらゆる平行移動の運動に制限される。
【0038】
従って、適切なデータ取得積分時間を得るために更に好ましい方法は、プラーテンの1回転以上の回転に対してデータを収集することである。図8を参照すれば、ステップ102の間に、プラーテンの各1回転に対してとることができるデータ取得時間の間に、レーザー干渉計の信号がサンプリングされる。次に、ステップ104及び106において、サンプリングされた信号はそれぞれ、前述のデータ取得時間にわたって積分され、この積分値は保存される。そして、ステップ108及び110においては、プラーテンが完全に1周するたびにサンプリング時間の累積が計算され、所望の最小サンプリング時間と比較される。無論、サンプルが1つだけとられたのであれば、これはただ1つのサンプリング時間を構成するだろう。累積サンプリング時間が所望の最小サンプリング時間以上になれば、ステップ112に示されるように、保存されていた積分値が転送されて総和される。そうでなければ、サンプリング、積分、保存、累積サンプリング時間の計算及び所望の最小サンプリング時間との比較のプロセスが継続される。最終ステップ114では、毎回保存されていた積分値が転送されて総和されて作り出された総計積分値が、データ信号として出力される。ここに説明してきたデータ収集法は、論理回路又はソフトウェアアルゴリズムを用いる多くの既知の方法によって実施可能である。これらの方法はよく知られており、詳しい説明は冗長になるため、ここでは割愛した。区分的なデータ収集の方法により、ウィンドウの直径やプラーテンの回転のスピードに関係なく、問題所望の最小サンプリング時間に適合させる問題の解決策が与えれらることは、注目すべきである。実際、このプロセスが位置センサ装置と結び付いた場合は、プラーテン回転スピードを変化させても信頼性の高いデータを得ることが可能である。必要なデータを得るために要するプラーテン回転の数だけを変えればよい。
【0039】
前述の第1の反射ビーム及び第2の反射ビームは、図4及び図5に示されるように結合ビーム60を形成し、検出器48で検知される干渉を生じさせる。第1の反射ビーム及び第2の反射ビームが相互に位相が合っている場合は、これらは検出器48において最大値となる。これらのビームの位相が180°ずれている場合は、検出器において最小値となる。これらの反射ビームの間のその他の位相関係により、干渉信号が、検出器により検知される最大値と最小値の間のいずれかの値となるだろう。この結果により、検出器48からの信号出力は、酸化物層52の厚さがCMPプロセスの最中に減少されるにつれて、この厚さに対して周期的に変化する。実際、図9(a)及び(b)のグラフに示されているように、検出器48からの信号出力は、正弦曲線状の様式で変化するだろうことが観察された。図9(a)のグラフは、時間(x-軸)に対する各サンプリング時間にわたる検出信号の振幅(y-軸)の積分を示している。このデータは、シリコン基板の上に形成されている酸化物層(即ち、ブランク酸化物ウエハ)を有するウエハにCMPの手順を実施しながら、図4の装置のレーザー干渉計出力をモニタすることにより、得られたものである。図9(b)のグラフは、図9(a)のグラフからのデータにフィルタをかけた態様を表している。このフィルタをかけた態様は、干渉計の出力信号における周期的な変化を更にはっきりと示している。CMPプロセスの最中に酸化物層から材料が除去されるときの速度によって、干渉信号の周期が制御されることは、注目すべきである。従って、プラーテンパッドに対してウエハ上にかかる下向きの力やプラーテンとウエハとの間の相対速度が、この周期を決定する。図9(a)及び(b)でプローブとされている出力信号の各周期中に、酸化物層はある厚さだけ除去される。除去された厚さは、レーザービームの波長及び酸化物層の屈折率に比例している。具体的には、1つの周期毎に除去される厚さの量は、およそλ/2nであり、λはレーザービームの自由空間波長、nは酸化物層の屈折率である。従って、図10(a)に例示される方法を用いれば、CMPプロセスの最中に酸化物層がどのくらいインシチュウで除去されるかを決定することが可能である。第1に、ステップ202では、データ信号に現れるサイクルの数が計数される。次に、ステップ204では、出力信号の1サイクルの間に除去される材料の厚さが、レーザービームの波長とウエハの酸化物層の屈折率とから計算される。そして、ステップ206において、酸化物層から除去されるべき材料の所望の厚さが、実際に除去された厚さと比較される。実際に除去された厚さは、データ信号に現れるサイクルの数と、1サイクル中に除去される材料の厚さとの積に等しくなる。最後のステップ208では、除去された厚さが、除去されるべき材料の所望の厚さ以上となったときに、CMPプロセスが終了する。
【0040】
あるいは、除去される材料の量を決定するためには、1サイクル全体よりも少ないサイクルを用いてもよい。この方法では、材料が所望の量を越えて除去される分を最小にすることができる。図10(a)のステップ202の括弧書きの部分に示されているように、1サイクルの中の所定の部分が生じる回数が、各反復毎に計数される。例えば、最大値(即ち、ピーク)と最小値(即ち、谷)がそれぞれ生じること、あるいはその逆が生じることが、サイクルの所定の部分を構成する。最大値及び最小値は周知の信号処理の方法により簡単に検出可能であるため、サイクルのこの特別な部分は便利である。次に、ステップ204では、1サイクルの間に材料がどのくらい除去されたかを決定した後、この厚さと、前述の所定の部分が代表する1サイクルの部分とを掛合わせる。例えば、1.5サイクルを代表する、最大値と最小値の発生を計数するケースでは、計算で得られた1サイクルの厚さを1.5倍して、サイクルの所定の部分の間に除去された酸化物層の厚さを得ることができる。その他のステップはそのまま変えない。この別のアプローチの正味の結果によれば、CMPプロセスは、サイクルの部分が生じた後に終了することができる。従って、除去される材料のうち過剰な部分は、ほとんどのケースでは、除去される材料の量を決定する基礎として全サイクルを用いた場合よりも少なくなるだろう。
【0041】
ここに述べてきた方法を、サイクルの終わり又はその部分から逆にたどることにより、所望の量の材料が除去されたかどうかが決定される。しかし、上述の如く、除去された材料の量は所望の量を越えてしまうだろう。用途によっては、この過剰な材料の除去は許容されないだろう。これらのケースでは、やがて来る周期にわたって除去される材料の量を期待し予測し、所望の量の材料が除去されると予測されたときに手順を止める、別の方法を採用することができる。この別の方法の好ましい具体例は、図10(b)に例示される。そこに示されているように、第1のステップ302は、検出器信号において、最大値と最小値の最初の発生の間の時間またはその逆の時間を測定する操作を有している(全サイクル又はその一部分のどちらを用いてもよい)。次に、ステップ304では、サイクルのその部分の間に除去される材料の量が、前述の方法によって決定される。そして、ステップ306に示されるように、除去された材料の量を測定時間で除することにより、除去速度が算出される。これが、サイクルの前述の部分において材料が除去されるときの速度を構成する。次のステップ308では、ステップ304で算出された材料の除去厚さを除去すべき厚さから減じ、残りの除去厚さを決定する。そして、ステップ310では、この残りの除去厚さを除去速度で除すことにより、CMPプロセスを終了までどのくらい継続すべきかを決定する。
【0042】
しかし、検出器信号の周期、及び即ち除去時間は、典型的には、CMPプロセスの進行につれて変化するだろうことに注目すべきである。従って、上述の方法は、これを補償するために反復される。換言すれば、残りの時間が算出された後は、最大値と最小値の発生又はその逆のそれぞれに対して、このプロセスが反復される。従って、次に最大値と最小値がそれぞれ発生するまでの時間が測定され、この最大値と最小値の発生に代表されるサイクルの部分(即ち1.5サイクル)の間に除去される材料の厚さが測定時間で除され、この方法の最初の反復におけると同様に、除去速度が算出される。しかし、次のステップ308では、括弧内に示されるように、その前になされた反復全ての間に除去された材料の量は、所望の厚さから減じられる前に決定される。この方法のその他の部分は同様であり、除去すべき残りの厚さを新たに算出された除去速度で除して残りのCMPプロセスの時間を決定する。この方法では、検出器信号の1サイクルの所定の部分が生じる毎に残りのプロセス時間を計算し直す。このプロセスは、次の反復を開始できる前に残りのCMPプロセス時間がなくなるまで続けられる。ステップ312に示されるように、このポイントでCMPプロセスが終了する。典型的には、除去されるべき厚さが検出器信号の最初の1.5サイクルでは達せられず、先行した1.5サイクルに対して算出された後の除去速度の変化は小さいだろう。従って、この予測の方法は、ウエハから所望の厚さだけを除去するには非常に正確な方法を与える。
【0043】
ここに述べてきたモニタの手順は、スムーズな面を有するブランク酸化物ウエハに対して良好に機能するが、表面が局所的に非常に不均一であるような、パターニングされたウエハの多くに対してこの手順を平坦化に用いても成功できないことが見出されている。この理由としては、典型的なパターニングされたウエハはダイを有し、このダイには様々なサイズの異なる表面造作(ぞうさく)が現れているからである。このサイズの異なる表面造作は異なる速度で研磨される傾向を有している。例えば、他の造作から相対的に遠くに配置されている小さな表面造作は、他の大きな造作よりも早く減少する傾向がある。図11(a)?(c)には、酸化物層52の表面造作72、74、76の1組が、その下の構造体78、80、82と関連して例示される。これらは、典型的なパターニングされたウエハ14上に見られ、CMPプロセス中に変化していく。造作72は比較的小さな造作であり、造作74は中ぐらいのサイズの造作であり、造作76は比較的大きな造作である。図11(a)には、研磨前の造作72、74、76を示し、図11(b)は研磨プロセスの中ほどの造作72、74、76を示し、図11(c)は研磨プロセスの終了に向けた造作72、74、76を示す。図11(a)では、小さい方の造作72は、中ぐらいの造作74及び大きい方の造作76よりも早い速度で減少するだろう。更に、中ぐらいの造作76は、大きな造作78よりも早い速度で減っていくだろう。造作72、74、76が減っていく速度も、研磨プロセスが進行するにつれて減少する。例えば、小さい方の造作72は最初には高い減少速度を有しているだろうが、この速度は研磨プロセス中に減少するだろう。従って、図11(b)には、造作72、74、76の高さが不均一になり始めていたのが、図11(c)には、造作72、74、76の高さは実質的に均一になっていることが示されている。サイズの異なる造作が異なる速度で減っていき、この速度も変化するため、各造作から発せられる干渉信号は、異なる位相及び周波数を有しているであろう。従って、造作72、74、76のそれぞれからの個々の反射の全てから部分的に成る結合された干渉信号は、前述の周期的な正弦波状信号ではなく、外見上ランダムな様式で変動するだろう。
【0044】
しかし、上述のように、造作72、74、76の研磨速度は、平坦化のポイントに近付く傾向がある。従って、造作72、74、76によって発生する干渉ビームの間の位相差及び周波数差は、ゼロに近付くだろう。この結果、結合された干渉信号が周期的な正弦波の形態として認識できるようになる。従って、正弦波状の干渉信号が開始するときを検出することにより、パターニングされたウエハの表面が平坦化された時を決定することが可能となる。この方法は、図12に例示される。まず、ステップ402では、干渉計信号における前述の正弦波状の変化に対するサーチが行われる。正弦波状の変化が発見されれば、ステップ404に示されるように、CMPの手順は終了する。
【0045】
図13は、CMPの手順が行われているときのパターニングされたウエハに対する検出器信号の振幅を時間に対してプロットしたグラフである。このグラフを作成するために用いられたサンプリングされたデータは、次の積分値が報告されるまで、前の積分値に保持された。従って、これは、ここに方形化されたピーク値(squared-off peak value)が示されていることを説明している。細密な検討により、認識可能な正弦波状のサイクルは、約250秒のところで現れていることが示される。ここは、パターニングされたウエハが最初に平坦化された点と一致する。無論、干渉計の出力信号のリアルタイムのモニタにおいて、周期がいつ始まるかを正確に知ることは不可能である。むしろ、周期が始まったと確信できる前には、サイクルの少なくともどこか一部が起こっているはずである。CMPの手順が終了する前に、1サイクルだけが終わることが好ましい。信号がウエハの表面状にあるサイズの異なる造作を研磨することにより生じたノイズの変化を単純に表しているのではなく、周期が実際に始まっていることが、高度に確信できるため、1サイクルの制限は、実用的な選択である。更に、この1サイクルの制限により、平坦化が達せられた後に、少ない材料の量だけがウエハ表面から除去されることを確保する。2サイクル後の平坦化の程度は、1サイクル後と実質的に同じであったことが見出された。従って、CMPの手順を継続させることは、ウエハ表面から更に多くの材料を除去する事だけしか与えない。パターニングされたウエハが平坦化されればCMPプロセスが終了する場合のケースでは、1サイクルが好ましいが、これは本発明がこのような時間の枠にとらわる事を意図しているわけではない。信号が特別強力であった場合、サイクルの中の一部だけが終了した後に同じレベルの確信を得ることも可能だろう。あるいは、信号が特別に微弱であった場合、必要な確信を得るためには1サイクル以上必要なこともあるだろう。その選択は、用いているシステムの特性に依存する。例えば、クオーツウィンドウとウエハ表面との間のギャップのサイズは、信号強度に影響するだろうことから、CMPプロセスを終了させる前に何回サイクルをさせるかの決断に影響するだろう。
【0046】
レーザー干渉計からの出力信号がいつ周期化し、即ちウエハ表面が平坦化されているかを実際に決定することは、様々な方法により行うことが可能である。例えば、信号をデジタル処理し、この決定を行うアルゴリズムを用いることができるだろう。この様な方法は、米国特許第5,097,430号に開示され、その特許では、信号の傾斜を用いて決定を行っている。更に、カーブにフィッティングするための様々な周知のアルゴリズムを用いることが可能である。これらの方法は、干渉計信号の正弦波曲線との類似性を見出すために本質的に用いられるだろう。所定の許容範囲の中で一致すれば、周期が開始したと決定される。半導体の用途によっては、パターニングされたウエハのダイ上に形成された構造体の上に形成された材料の厚さ(即ち膜厚)が特定の深さのところにあることが必要であり、また、この膜厚が、ダイとダイの間、並びにウエハとウエハとの間で再現性をもつことが必要である。前述の典型的なパターニングされたウエハを平坦化するための方法では、この所望の再現性のある膜厚は必要がないだろう。平坦化の方法の目的は、スムーズ且つ平坦な表面を作ることであり、特定の膜厚を作ることではない。従って、特定の構造又は同じ様なサイズを有する構造の群の上に膜厚を制御することが望ましい場合は、別の方法を採用する必要がある。この別の方法を、以下に説明する。
【0047】
前述の如く、ダイ上のパターニングされた構造の上に酸化物の層を形成することにより生じた、サイズの異なる表面造作はそれぞれ、独自の周波数及び位相を有する反射干渉信号を生じさせる。サイズの異なる表面造作のそれぞれの周波数及び位相が収斂したとき、平坦化のポイントに単に近付いているに過ぎない。この収斂の前には、サイズの様々に異なる表面造作によって生じる干渉信号の独自の周波数及び位相が結合し、ランダムに変化するように見える検出器信号を発生させる。しかし、この信号を処理することにより、特別なサイズの造作又は同様のサイズの造作の群を除いて、異なる速度で研磨されることになる全ての造作の干渉信号の寄与を排除することが可能である。特定のサイズの造作又は造作の群に関する干渉信号が分離されれば、ブランク酸化物ディスクから材料を除去することに関して説明した方法を用いて、所望の膜厚を得るために必要な量だけを除去できる。
【0048】
無論、着目する造作によって生じる干渉信号の成分の周波数を、信号の処理の前に決定しておく必要がある。上に形成される膜が特定の膜厚を有するような構造に対応した構造だけがパターニングされたダイを有する試験片上にCMPプロセスを実施することにより、この周波数は簡単に決定できると考えられる。このCMPプロセスの最中に発せられる検出器信号を、周知の方法によって解析して、前述の構造に関する表面造作によって生じる干渉信号の周波数を決定する。
【0049】
ウエハのCMP処理の最中に、インシチュウで、ダイ上の特定の構造又は同じ様なサイズを有する構造の群に対する膜厚を制御する、前述の方法を実施するために必要な特定のステップを、図14を参照しつつ説明していく。ステップ502では、検出器信号をフィルタにかけ、着目する構造に関する所定の周波数を有する信号の成分だけを通過させる。このステップは、周知のバンドパスフィルタの技術を用いて実行される。次に、ステップ504では、検出器信号において最大値と最小値が最初に発生する間の時間又はその逆の時間の測定がなされる(全サイクル又はその一部分のどちらを用いてもよい)。サイクルのこの部分(即ち1.5サイクル)の間に除去される材料の量は、ステップ506において前述の方法により決定される。そして、ステップ508に示されているように、除去された材料の量を測定時間で除して、除去速度が算出される。これは、サイクルの前述の部分において材料が除去された速度を構成する。次のステップ510では、ステップ506において算出された材料除去の厚さが、除去されるべき所望の厚さ(即ち、除去されたときに、着目する構造の上に所望の膜厚を与える厚さ)から減じられて、残りの除去厚さを決定する。そして、ステップ512では、この残りの除去厚さを前述の除去速度で除し、CMPプロセスを終了までどのくらい継続すべきかを決定する。この残りの時間が計算されれば、最大値と最小値がそれぞれ発生すること又はその逆に対して、プロセスが反復される。従って、この方法の最初の反復におけると同様に、次の最大値及び最小値の発生の間の時間が測定され、この最大値及び最小値の発生に代表されるサイクルの部分(即ち1.5サイクル)の間に除去される材料の厚さを測定値で除して、除去速度が算出される。しかし、次のステップ510では、括弧書きに示されているように、その前の反復の全ての間に除去された材料の総量を、所望の厚さから減ずる前に決定する。除去されるべき残りの厚さを新たに計算された除去速度で除して新しい残りのCMP時間を決定する点で、この方法のその他の部分は同じである。このプロセスは、次の反復を始められるまで繰り返される。ステップ514に示されているように、このポイントでCMPプロセスが終了する。
【0050】
上述の膜厚を制御するための方法は図10(b)に例示されるCMPプロセス終点決定のための方法を利用しているが、所望により、ここに記載されているその他の終点決定の方法を用いてもよいことに注意すべきである。
【0051】
レーザー干渉計によって発生するレーザービームのビームの直径(即ちスポット)及び波長を有利なように操作することが可能であることに更に注意すべきである。図15の(a)及び(b)に示されているように、用いる波長に対し最小可能なスポットに合わせたビーム等の幅の狭いビーム84は、ウエハ14の表面に対して、フォーカスできていない広いビーム86よりも小さな領域をカバーする。この狭いビーム84は、広いビームに比べて、表面の不均一90による散乱(即ちビーム88)を生じやすく、なぜなら、この広いビーム86はウエハ14の表面の更に広い面積に広がり、表面の不均一90よりも大きな部分を包含するからである。従って、広いビームは積分効果を有することとなり、ウエハ14の表面を移動するときには、反射干渉信号に極端な変動を生じさせにくい。従って、この理由から、ビームは広い方が好ましい。レーザービームの幅を広くするためには、周知の光学装置を用いることが可能である。
【0052】
また、ウィンドウの境界と境界の中にビームが完全に含まれる時間は、ビームが広い時の方がビームが狭い時に比べて少ないため、ビームが広いとプラーテンの回転毎のデータ取得に使える時間を減らすことになることを、指摘する必要がある。しかし、前述のデータ取得の方法を用いれば、このことは大きな問題にはならないだろう。更に、ビームが広いと、ビームが狭い時に比べて、光エネルギーをより大きな面積に拡散させてしまうため、反射光の強度も幾分小さくなる。この難点は、反射ビームの強度のロスが検出における要因とはならなくようにレーザー干渉計からのレーザービームの出力を増加させることにより、克服可能である。
【0053】
レーザービームの波長に関しては、遠赤外から紫外までのあらゆる波長を用いることが可能である。しかし、赤光の範囲のビームを用いることが好ましい。これが好ましいことの理由は二重になっている。第1に、波長が短いとケミカルスラリによって生じる散乱の量が増加することになり、なぜなら、この散乱はレーザービームの周波数の4乗に比例するからである。従って、波長が長い方が、散乱が少なくなる。しかし、波長が長ければ干渉信号の周期毎に除去されるべき酸化物層の量が多くなり、なぜなら、周期毎に除去される材料の量はおよそλ/2nに等しいからである。従って、波長が短ければ、1つの周期に除去される材料の量が少なくなる。材料が過剰に除去される可能性を最小にするように、各周期中に除去される材料を可能な限り少なくすることが望ましい。例えば、サイクルの数又はその一部が計数されて除去された酸化物層の厚さが決定される、前述の方法を用いたシステムでは、各サイクル又はその一部の間に除去される材料の量が可能中限最小になれば、所望の量に対して過剰に除去された材料が最小になる。
【0054】
赤光レーザービームを選択することにより、波長の選択に関するこれらの2つの対立する要因を最適にバランスさせると考えられる。赤光は、サイクル毎に除去されるべき材料の量を制御不能にすることなく、散乱を許容される程度にする。
【0055】
更なる具体例発生した干渉波形により、研磨プロセスに関する重要な情報を更に得られる。この追加された情報を用いることにより、研磨された層の均一性のインシチュウによる測定が可能になる。またこれを、CMPシステムが仕様(スペック)の中で操作されていない(即ち、望ましく操作されていない)かどうかを検出するために用いることも可能である。これらの両者を、以下に説明する。
【0056】
均一性の測定ウエハ/基板の表面にわたって均一な表面層を得るためには、CMPプロセスにおいて行われる研磨及び/又は平坦化の操作が一般に必要である。換言すれば、ウエハの中心とウエハのエッジとが同じ速度で研磨されるべきである。典型的には、研磨後の層の厚さが約5?10%を越えて変動してはならない。均一性がこのレベルに達しなかった場合は、デバイスの収率が低く許容できなくなるため、ウエハは使用できなくなるだろう。実際には、ウエハ全体に均一な研磨速度を達することが非常に困難な場合がしばしばである。典型的には、数多くの変数を最適化してスペック内に保つことが必要とされる。上述の終点検出器は、研磨されるべき層の均一性をモニタするためのツールとして非常に有用であり、また、インシチュウによるデータの取得及びデータ処理の双方のモニタをすることも可能である。研磨中に干渉計によって作り出された干渉波形が、研磨されるべき層の均一性に関する情報を与えることを、我々は見出した。上述の如く、表面層(即ち酸化物層)が研磨されるときには、干渉計の出力が正弦波状の信号になって現れる。このピークとピークの間の距離は、材料がどのくらい除去されたかを指示している。この正弦波信号の頂点では、更に高い周波数の別の正弦波信号も存在するだろう。この更に高い周波数の方の信号の振幅は、ウエハの表面全体で研磨後の層の厚さがどの程度まで変化したかを指示している。
【0057】
高い周波数の信号が現れる理由は、以下の通りである。研磨が進むと同時に、典型的には干渉計はウエハ表面全体の様々な場所をサンプリング(又は注目)する。なぜなら、研磨中は、プラーテンとウエハは共に回転しており、更にウエハはプラーテンに対して軸方向に運動しているからである。従って、研磨中は、研磨されるべき層を干渉計が見るためのプラーテン内のホールの上を、ウエハ表面の様々な領域が通過する。研磨された層が完全に均一である場合は、その結果の干渉波形は、ウエハ表面全体にわたっていろいろな場所をサンプリングすることによる影響を受けない。即ち、それは実質的に同じ振幅を有することになるだろう。換言すれば、研磨された層が不均一ならば、様々な場所をサンプリングすることによって、正弦波を基礎とする信号に更に変動を持込むことになる。この持込まれる変動は、用いられている回転速度と掃引速度に依存する周波数を有し、研磨された層の非均一性の程度に比例した振幅を有している。このような波形の一例が、図16に示されている。この特定の例では、周波数の高い信号を明確に例示できるように、非均一性が相対的に大きくなっている。
【0058】
周波数の高い信号のピークとピークの間の振幅Ahfと周波数の低い信号のピークとピークの間の振幅Alfとの比が、均一性の尺度になる。この比が小さくなれば、研磨された層の均一性が高いことになり;その逆の場合は、非均一性が大きくなる。
【0059】
均一性の尺度を作り出すCMPシステムが、図17に示される。図2に示されている前述の部材に加えて、これは、干渉計の動作を制御するための、且つ干渉信号からの均一性の尺度を発生させるために必要な信号解析を行うためのコンピュータ150を備え、また、様々な情報や結果をオペレータに対して表示するためのディスプレイユニット160を備えている。コンピュータ150は、制御機能及び信号処理機能を行うことが出来るものであれば何れの装置でもよく、例えば、適切なプログラミングを有する標準的なPCや、その用途専用の特別にデザインされたデジタル処理ユニットである。ディスプレイユニット160は、ビデオディスプレイ、プリンタ、又は、CMPシステムのオペレータに情報を連通させるための装置の組合わせであってもよい。
【0060】
均一性の尺度を発生させるために、コンピュータ150は、図18に示されるような信号処理及びその他の機能を実施実行するようにプログラミングされている。これに関しては、コンピュータ150は2つのプログラミング可能なバンドパスフィルタ、即ち、高周波フィルタ152と低周波フィルタ154を提供する。高周波フィルタ152は、均一性の情報を含んでいる高周波信号の周波数の中心にある通過帯域を有し、また、低周波フィルタ154は、研磨速度の情報を含んでいる低周波信号の周波数の中心にある通過帯域を有している。周期が数十秒のオーダーである場合は、これらの通過帯域の両者の幅は数ミリヘルツ(millihertz)のオーダーである。実に、通過帯域の幅は、中心周波数に比例して変化するようにプログラムされ、又は言い方を替えれば、評価されるべき信号の周期に反比例するようにプログラムされる。即ち、問題としている信号の周期が大きくなれば、バンドパスフィルタのバンド幅が減少し、その逆も真である。
【0061】
図19(a)には、実際のシステムから得られる干渉計信号の一例が示される。層が充分均一であること、即ち、低周波信号の頂部に高周波信号がのっていることが認識されていないことを、初期に信号が指示していることに注目すべきである。研磨が短い周期の間行われた後、高周波信号が現れ始め、非均一性があるレベルになっていることを指示している。低周波フィルタ154は低周波成分を選択し、他の成分をカットして、図19(b)に示されている形態の出力信号を生じさせる。同様に、高周波数フィルタ152は高周波成分を選択し、他の成分をカットして、図19(c)に示されている形態の出力信号を生じさせる。
【0062】
コンピュータ150は、フィルタ152及び154の出力信号それぞれのピークとピークの間の振幅を測定する2つの振幅測定機能156及び158を備える。2つのフィルタされた信号が決定されれば、コンピュータ150は、高周波信号のピークとピークの間の振幅と低周波信号のピークとピークの間の振幅との比(即ち、Ahf/Alf)を計算する(機能ブロック162を参照)。この比が計算された後は、コンピュータ150が計算値を、予めローカルメモリに保存した閾値又は参照値164と比較し(ブロック166参照)する。計算値が保存していた閾値を越えれば、コンピュータ150はオペレータに対し、研磨された層の非均一性が許容量を越えたことを警告する。これに対し、オペレータはプロセス変数を調整して、プロセスをスペック内に戻す。
【0063】
高周波信号は、研磨がある程度行われてから現れる傾向があるため、非均一性の測定を行う前に待機することが有用である。実に、研磨の操作全体において研磨された層の均一性をモニタできるように、この比を周期的に自動的に計算することが望ましい。このケースでは、オペレータが研磨プロセスにおいて現れる変化及び/又は傾向を検出できるように、コンピュータ150がプロセスの間じゅう計算値を出力できることが望ましいだろう。実際の製造工程の間のウエハの研磨中に、インシチュウでモニタが行われる場合に特に有用であろう。
【0064】
ここに述べた機能は、コンピュータ上で走らせるソフトウェアによって実行でき、また、この特別の目的のために作られた専用の回路によって実行させてもよいことに、注目すべきである。
【0065】
バンドパスフィルタは、いわゆる当業者が周知の技術を用いて実行可能である。ここに説明される具体例では、これらはFIR(finite impulse renspone)(有限インパルス応答)フィルタで、周波数又は時間領域(time domain)のいずれかに関して実施可能である。しかし、干渉計信号が使用可能となるようにリアルタイムでフィルタリング(filtering)を実施するためには、フィルタリングは、適切な関数を発生した時の波形で畳み込むことにより、時間領域において行われる。無論、この適切な関数は、所望の特性を有する(即ち、中心周波数及びバンド幅)バンドパスフィルタの時間領域を単に表示するものである。
【0066】
適切なフィルタの変数を特定するため、フィルタによって選択されるべき信号の周波数を知ることが必要である。この情報は、干渉計信号波形から容易に得ることができる。例えば、低周波フィルタの中心周波数は、ウエハ(例えば、酸化物のコーティングのみを有するブランクウエハ)のバッチ(例えば25)を行い、研磨速度の正確な尺度を得ることにより、得ることが可能である。あるいは、研磨速度は、低周波信号のピーク間の距離を測定することにより、研磨操作の開始時で決定することが可能である。無論、このもう一つのアプローチを用いることで、多数のウエハにわたって測定値の平均を行う場合と同様の正確性を得ることはできない。いずれのケースにせよ、研磨速度はバンドパスフィルタの中心周波数を決定し、フィルタの所望のバンド幅とあわせてこの中心周波数を知ることにより、時間領域フィルタ関数及び/又はFIRフィルタの計数の正確な形態を直ちに決定することが可能でとなる。
【0067】
高周波信号の周波数は、同様の手法;即ち、CMPシステムがウエハを研磨しているときに干渉計から発せられるトレースから直接得ることが可能である。換言すれば、オペレータは単に高周波信号のピーク間の距離を測定するだけでよいい。このプロセスは容易に自動化できるため、オペレータは、ポインティングデバイス(例えば、マウス)により、ビデオディスプレイに表示される波形の2つのポイントをマークすることができ、また、自動的に周波数の計算を行った後適切なフィルタ計数を発生するようにコンピュータにプログラミングをすることが可能である。そして、フィルタ計数及び/又はフィルタ関数の時間領域表示は、その後の研磨の工程中にフィルタリングの操作を行うために用いるため、ローカルメモリに保存される。
【0068】
プロセスシグネチャまた、干渉計波形は、システムのシグネチャ(即ち、その特性)を表している。このため、これは、製造のオペレーションに対してシステムの特性を与えるために有用な情報を与える。望ましく操作されていることがわかっているシステムに対してシグネチャが得られた場合は、参照値としてシグネチャ波形(又は波形から抽出された特徴)を用いることが可能であり、この参照値に対して、次に発生するシグネチャを比較して、これらシグネチャが続いて得られたシステムが、スペックの中で実行されているかどうかが決定される。例えば、研磨パッドが取り替えられたり、新しいバッチのスラリがCMPシステムに用いられた場合に、オペレータは、この変化が、システムが実行する研磨の質に有害な影響を与えるかどうかを知る必要がある。CMPシステムの性能における変化によってシグネチャが変化することを、我々は見出した。即ち、以前は存在していなかったような、あるいは以前に存在していた特徴が変化するような、ある決まった変化が波形に現れる。これらの変化を検出することにより、システムが望み通りに実行されていない時を検出することが可能である。
【0069】
ここに説明される具体例では、干渉計波形から抽出された特徴は、研磨速度であり、均一性の尺度である。これらの特性は、前述の方法を用いて、研磨の最中に発生する干渉計の波形から容易に得ることができる。システムが正確に操作されていれば、特定の研磨速度と特定の均一性の尺度を与えるだろう。これらの参考値からはずれることは、システムが望ましい操作のポイントから離れる方向にに移動していることを示し、オペレータに、製品の損害を防止するために適正化する行動をとる必要があることを警告する。CMPシステムシグネチャを用いる方法は、図20(a)に例示され、以下に説明される。最初に、最適に操作されるべきとであるとわかっているCMP装置に対して、干渉計波形(即ち、シグネチャ)が発せられる(ステップ250)。システムが最適に動作しているか否かの決定は、試験ウエハのセットを処理してその結果を解析することにより、実験的に決定可能である。得られた結果がスペックの中に入っていた場合、この構成及び操作条件の組に対してシグネチャを発生できる。干渉計波形の一部を捉える前に、この波形が本当に、準備された研磨のシグネチャであるように、ウエハの研磨が酸化物の中を50?100%の間で行われることが望ましい。
【0070】
波形が得られた後は、特定の着目する特徴が、発せられた波形から抽出され(ステップ252)、これは、後にシステムの性能の評価に用いる参考値として利用するために、保存される(ステップ254)。あるいは、波形自体を保存して、参考値として用いてもよい。ここに説明した具体例では、抽出された特徴は、研磨速度であり、均一性の尺度であり、これらの双方とも、上述のように、波形から決定することが可能である。
【0071】
図20(b)に示されるように、後になって、保存されていたシグネチャ(又は抽出された特徴)を用いて、製造の用途で、そのシステム又は別のシステムの特性を与えることが可能である。製造のためにシステムに特性を与えるために、そのシステムに対して新しいシグネチャが得られ(ステップ258)、着目している特徴が、新しいシグネチャから抽出される(ステップ260)。そして、抽出された特徴は、特徴の参照値の組と比較される(ステップ264)。抽出された特徴の組によって特徴付けられるように、操作のポイントが、保存された特徴の組の参考値によって定義される、参考値の周囲の所定の領域に入っているならば、システムは適正に操作されていると結論付けられ、また、製品ウエハの処理のためのアウトラインを与えることが可能である(ステップ266)。このプロセスが自動化された場合は、このポイントで、コンピュータはオペレータに対し、プロセスがスペック内に入っていないと警告を発してもよい。他方、操作のポイントが所定の範囲内に入らなかった場合は、これは、システムがスペック内で操作されていないことの指示であり、オペレータは、この問題に対して補正する行動をとることができるように、警告を受ける(ステップ268)。この補正の行動には、プロセス変数の一部を適正に調節し、プロセスをスペック内に入れるようにする操作を含んでいる。例えば、研磨速度が過剰であった場合、又は、酸化物の非均一性が許容を越えれば、オペレータは、新しいバッチのスラリに変えてみたり、パッド上の圧力を調節したり、あるいは、パッドを交換したりすることが適切であると認識するだろう。この選択される補正の行動の特定のコースは、無論、システムが望ましい操作ポイントからどの程度ずれているかに、また、特定のシステムの操作変数の構成に、また、オペレータの経験が何をオペレータ自身に示唆しているかに、依存するだろう。
【0072】
オペレータに対して更に有益な情報を提供するために、コンピュータは適宜、抽出された特徴もディスプレイに出力する。このディスプレイに表示された情報は、抽出された特徴、波形、抽出された特徴が、保存されている参考値の組の様々な特徴とどの程度近いのか、又は、オペレータにとってどの方法が最も有利に解決するかを表している。
【0073】
無論、製品ウエハの処理をしつつも、又は、CMPプロセスにおいてプロセス変数が変化する(例えば、新しい研磨パッドが用いられた時にはパッド圧力が調節され新しいバッチのスラリが用いられる)たびに、及び、CMPプロセスがまだスペック内にあることを知る必要が生じるようになるたびに、上述のインシチュウ/リアルタイムのモニタの手順を周期的に用いることが可能である。更に、これを、実際の製品の代りにブランクウエハに用いて、実際の製品に用いる前にCMPシステムを特徴付けることが可能である。
【0074】
我々は、シグネチャ波形から情報を抽出する直接且つ簡単なアプローチ、即ち、研磨速度と均一性の尺度を用いたアプローチを説明してきたが、シグネチャ又は干渉計の波形を、更に洗練された方法で解析することも可能である(例えば、ほんの一例を挙げれば、パターンないし特徴の認識又はその他のイメージ解析のアルゴリズム、又はニューラルネットワーク等)。様々な抽出特徴がシステムの動作に関して伝える情報は、経験を通じて決定でき、また、オペレータにとって最も重要と認識される情報を伝達するものを用いることができる。
【0075】
また、オペレータに対して干渉計波形(即ちプロセスシグネチャ)を単に表示するだけで、オペレータは、システムがどの程度うまく振る舞っているかに関する価値あるフィードバックを得ることが可能となることに注目すべきである。典型的には、人間の目は高度に敏感であり、画像において予想される変化が僅かでも生じればこれを検知する。従って、ある程度経験を積んだ後は、オペレータはしばしば、波形を見るだけで、CMPシステムの性能全体の変化やさしせまった問題を検知することが可能となるだろう。従って、ここに説明された具体例では、コンピュータも処理の間、シグネチャの波形をオペレータに表示することにより、オペレータがこれを用いて装置の性能をモニタすることが可能となる。
【0076】
当業者が既知の技術を用いることにより、オペレータが着目し変化を自動的に認識又は検出しオペレータに特定の問題があることを警告するソフトウェアアルゴリズムを直ちに開発することが可能である。
【0077】
性能を高めるための変形別の具体例では、干渉計とウエハとの間のパッド内のウィンドウを変形している。パッドは干渉計レーザービームの実質的な部分を透過させるが、パッドの底面から著しく反射してくる成分が存在することが見出されている。この状況は、図21(a)に例示され、ここでは、レーザー干渉計32から発せられるレーザービーム34は、パッド22を通過して伝送され、伝送ビーム702を形成し、また、レーザービーム34の一部は、パッド22の裏側面704から反射されて、反射ビーム706を形成する。反射ビーム706は、データ信号に著しい直流(DC)シフトを生じさせる。図21(b)は、このシフトを例示する(わかりやすくするために誇張して描いている)。この例では、反射レーザー光によってもたらされるDCシフトは信号全体に対して約8.0ボルトを加える。このDCシフトは、データ信号の有用な部分の解析に対して問題を生じさせる。例えば、データ解析装置が0?10ボルトの範囲で動作していれば、DCシフトを受けた信号を増幅して着目する部分を強化することは、信号のDC成分を低減又は排除しなければ不可能である。DC成分が除去されなければ、装置は増幅信号によって飽和してしまうだろう。DC成分を低減又は排除することは、信号処理のための電子技術を新たに必要とし、また、信号の有用な部分を損ねてしまう結果を与えるだろう。DCシフトがここに記載されるほど大きくない場合でも、これを排除するために何等かの信号処理が必要となると思われる。従って、この不要なDC成分を低減又は排除するための非電子技術的方法が望ましい。
【0078】
図21(c)に描かれるように、パッド22の裏側のウィンドウを構成する領域に散乱面704’を形成することにより、この面から反射する光が弱化する。従って、データ信号の不要なDC成分が低減される。実際上は、散乱面704’は、伝達されない光708を散乱し、そのほとんどを干渉計32へ反射し返すということはない。ウエハから反射された光も、散乱面704’を通過し、その間、一部が散乱されるであろう。しかし、これが干渉計の性能を著しく損ねることはないことが見出されている。
【0079】
図21(d)には、散乱面704’を用いたときに得られるデータ信号が例示される。示されるように、DC成分の排除と共に、信号は直ちに増幅され、DC部分を電子的に排除する必要なく処理される。
【0080】
どのように散乱面が作られるかは、重要な問題ではない。研磨パッドの裏面のウィンドウの近辺をサンディングすることにより、又は、散乱させるコーティング材料(例えば、スコッチテープ等)を貼ることにより、あるいは所望の結果をもたらすその他の方法により、散乱面を作ることができる。
【0081】
【発明の効果】
以上詳細に説明してきたように、本発明の装置及び方法は、CMPプロセスの最中に、除去された材料の厚さ又はウエハ表面の平坦度をインシチュウに決定するための、干渉による技術を採用する。
【0082】
このため、研磨プロセスに関して正確性を向上し更に有用な情報を与えるために用いる事ができる終点の検出器及び方法が提供される。
【図面の簡単な説明】
【図1】
従来技術の典型的なケミカルメカニカルポリシング(CMP)装置の側面図である。
【図2】
本発明に従って構成された終点検出器を有するケミカルメカニカルポリシング装置の側面図である。
【図3】
(a)?(c)は、図2の装置のウィンドウ部分の各具体例の簡略的な断面図である。
【図4】
レーザービームを発し且つ反射した干渉ビームを検出する事が可能なレーザー干渉計の部材を示す、図2の装置のウィンドウ部分の簡略的な断面図である。
【図5】
レーザービームがウエハに入射し、ビームが反射されて干渉ビームを形成するところを模式的に示す、図2の装置によって処理されるべきブランク酸化物の簡略的な断面図である。
【図6】
ウィンドウとセンサフラグの間の相対的な配置、並びに、センサとレーザー干渉計との間の相対的な配置の、1つの可能性を示す、図2の装置のプラーテンの簡略的な上面図である。
【図7】
ウィンドウが円弧状である場合の、ウィンドウとセンサフラグとの間の相対的な配置、並びに、センサとレーザーとの間の相対的な配置を示す、図2の装置Mのプラーテンの簡略的な上面図である。
【図8】
本発明に従った区分的なデータ取得の方法のフローチャートである。
【図9】
(a)及び(b)は、ブランク酸化物ウエハが薄くなっていく行程における、レーザー干渉計からのデータ信号の経時的変化を表すグラフである。グラフ(a)は所望のサンプリング時間にわたって積分されたデータ信号の積分値を示すグラフであり、(b)は、この積分値をフィルタにかけた場合のグラフである。
【図10】
(a)は、本発明に従ってブランク酸化物ウエハの酸化物層を薄くするCMPプロセスの終点を検出する後方予見法のブロック線図であり、(b)は、本発明に従ってブランク酸化物ウエハの酸化物層を薄くするCMPプロセスの終点を検出する前方予見法のブロック線図である。
【図11】
(a)?(c)は、図2の装置によって処理されるべき不均一な面を有する、パターニングされたウエハの簡略的断面図である。(a)は、CMPプロセスの開始時のウエハを示す図であり、(b)は、プロセス半ばのウエハを表す図であり、(c)は、平坦化されるポイントに近付いたウエハを表す図である。
【図12】
本発明に従って、不均一な面を有するパターニングされたウエハを平坦化するためのCMPプロセスの終点を決定する方法のフローチャートである。
【図13】
パーターニングされたウエハの平坦化の最中における、レーザー干渉計からのデータ信号の経時変化を表すグラフである。
【図14】
本発明に従って、特定のサイズの与えられた構造体又は同様のサイズが与えられた構造体のグループの上に形成される膜の厚さを制御するためのCMPプロセスの、終点を決定するための方法のブロック線図である。
【図15】
(a)は、直径の小さなレーザービームによって照射されるべき表面欠陥を有するウエハの簡略的な断面図である。(b)は、直径の広いレーザービームによって照射されるべき表面欠陥を有するウエハの簡略的な断面図である。
【図16】
非均一なウエハ表面に関する高周波信号を含む、ブランク酸化物の薄化の最中におけるレーザー干渉計からのデータ信号の周期的な変化を表すグラフである。
【図17】
干渉計と、干渉計の出力信号の波形を解析して応答するようにプログラミングされたコンピュータとを有するCMPシステムを表す構成図である。
【図18】
均一性のインシチュウでのモニタを実現するためにコンピュータの中で行われる機能のブロック線図である。
【図19】
(a)?(c)は、干渉計の信号、低周波バンドパスフィルタによりフィルタにかけられた後の干渉計の信号、並びに、高周波バンドパスフィルタによりフィルタにかけられた後の干渉計の信号を、それぞれ表すグラフである。
【図20】
(a),(b)は、シグネチャを発生させてこれをCMPシステムの中で用いて製造目的にかなうようにするための、フローチャートである。
【図21】
(a)は、研磨パッドをウィンドウとして用い、パッドの裏側からの反射を示す、図2の装置のウィンドウ部分の具体例の簡略的な断面図である。(b)は、図21(a)の具体例のパッドの裏側からの反射により生じた大きなDC成分を有する、レーザー干渉計からのデータ信号の経時的な周期変化を示すグラフである。(c)は、反射を抑制する散乱裏面を有するウィンドウとして研磨パッドを用いる、図2の装置のウィンドウ部分の一具体例の簡略的断面図である。(d)は、図21(C)の具体例のパッドの散乱裏面の結果としてパッドの裏側からの反射により生じた大きなDC成分を有しない、レーザー干渉計からのデータ信号の経時的な周期変化を示すグラフである。
【符号の説明】
10…CMP装置、12…研磨ヘッド、14…ウエハ、16…研磨プラーテン、18…パッド、20…裏張り層、22…カバー層、24…プラーテンの中心軸、26…研磨ヘッドの中心軸、28…平行移動アーム、30…ホール、32…レーザー干渉計、34…レーザービーム、36…ショルダ、38…クオーツインサート、40…ケミカルスラリ、42…ポリウレタンプラグ、44…コリメータ、46…ビームスプリッタ、48…検出器、50…基板、52…酸化物層、54…第1の反射ビーム、56…伝送ビーム、58…第2の反射ビーム、60…結合ビーム、62…光遮断器タイプセンサ、64…位置センサフラグ、66,66’…ウィンドウ構造体、72,74,76…表面造作、78,80,82…構造体、84…狭いビーム、86…広いビーム、88…ビーム、90…表面不均一、150…コンピュータ、160…ディスプレイ、152…高周波フィルタ、154…低周波フィルタ、156,158…振幅測定機能、702…伝送ビーム、704…裏側面、704’…散乱面、706…反射ビーム、708…伝達されない光。
 
訂正の要旨 審決(決定)の【理由】欄参照。
審理終結日 2007-02-06 
結審通知日 2007-02-13 
審決日 2007-02-28 
出願番号 特願2003-41566(P2003-41566)
審決分類 P 1 113・ 121- ZA (H01L)
最終処分 成立  
前審関与審査官 丸山 英行渡邊 豊英  
特許庁審判長 千葉 成就
特許庁審判官 鈴木 孝幸
菅澤 洋二
登録日 2004-01-09 
登録番号 特許第3510622号(P3510622)
発明の名称 終点検出方法およびシステム  
代理人 八幡 宏之  
代理人 小橋 正明  
代理人 久保山 典子  
代理人 松浦 憲三  
代理人 小橋 正明  

プライバシーポリシー   セキュリティーポリシー   運営会社概要   サービスに関しての問い合わせ