• ポートフォリオ機能


ポートフォリオを新規に作成して保存
既存のポートフォリオに追加保存

  • この表をプリントする
PDF PDFをダウンロード
審決分類 審判 全部申し立て 2項進歩性  B28B
審判 全部申し立て 特36条4項詳細な説明の記載不備  B28B
審判 全部申し立て 特36条6項1、2号及び3号 請求の範囲の記載不備  B28B
審判 全部申し立て 1項3号刊行物記載  B28B
管理番号 1376739
異議申立番号 異議2020-700656  
総通号数 261 
発行国 日本国特許庁(JP) 
公報種別 特許決定公報 
発行日 2021-09-24 
種別 異議の決定 
異議申立日 2020-09-03 
確定日 2021-07-02 
異議申立件数
訂正明細書 有 
事件の表示 特許第6656911号発明「粉末積層造形に用いるための造形用材料」の特許異議申立事件について、次のとおり決定する。 
結論 特許第6656911号の明細書、特許請求の範囲を訂正請求書に添付された訂正明細書、特許請求の範囲のとおり、訂正後の請求項〔1?8〕について訂正することを認める。 特許第6656911号の請求項1?8に係る特許を維持する。 
理由 第1 手続の経緯
本件特許第6656911号の請求項1?8に係る特許についての出願は、平成27年12月22日に出願され、令和 2年 2月 7日にその特許権の設定登録がされ、令和 2年 3月 4日に特許掲載公報が発行された。その後、本件特許の請求項1?8について、令和 2年 9月 3日に特許異議申立人 石川 宗利(以下、「申立人」という。)により特許異議の申立てがされ、当審は、令和 2年12月 8日付けで取消理由を通知した。特許権者は、その指定期間内である令和 3年 2月 8日に意見書の提出及び訂正の請求を行い、その訂正の請求に対して、申立人は、令和 3年 4月 5日に意見書を提出した。

第2 本件訂正の適否についての判断
1 本件訂正の内容
前記訂正の請求は、願書に添付した明細書及び特許請求の範囲の訂正であって、一群の請求項を構成する請求項1?8を訂正の単位とするものであるから、特許法第120条の5第4項及び同法同条第9項において準用する同法第126条第4項の規定に従うものであるところ、その訂正(以下、「本件訂正」という。)の内容は、以下の(1)?(3)のとおりである。なお、訂正箇所に下線を付した。

(1)訂正事項1
請求項1に係る「前記造粒焼結粒子の顆粒強度は、1MPaを超えて10000MPa未満であって、」を「前記造粒焼結粒子の顆粒強度は、10MPa以上2500MPa以下であって、」に訂正する(請求項1を引用する請求項2?8も同様に訂正する。)。

(2)訂正事項2
請求項2に係る「前記造粒焼結粒子の顆粒強度は、10MPa以上5000MPa以下である、」を「前記造粒焼結粒子の顆粒強度は、10MPa以上1000MPa以下である、」に訂正する(請求項2を引用する請求項3?8も同様に訂正する。)。

(3)訂正事項3
発明の詳細な説明の【0080】の「例の番号が増えるごとに焼結温度を10℃高くした。」という記載を「例の番号が増えるごとに焼結温度を10℃低くした。」に訂正する。

2 訂正の目的の適否、新規事項の有無、及び特許請求の範囲の拡張・変更の存否
(1)訂正事項1について
訂正事項1は、本件訂正前の請求項1に記載された「造粒焼結粒子の顆粒強度」について、その下限を「1MPaを超えて」から「10MPa以上」に、その上限を「10000MPa未満」から「2500MPa以下」に、さらに限定するものであるから、特許法第120条の5第2項ただし書第1号に掲げる特許請求の範囲の減縮を目的とするものであり、実質上特許請求の範囲を拡張し、又は変更するものではない。
また、訂正事項1は、本件明細書の【0030】の「造粒焼結粒子の顆粒強度は、10MPa以上であるのが好ましく」、「顆粒強度は5000MPa以下であるのが好ましく、2500MPa以下であるのがより好ましく」との記載に基づくものであるから、願書に添付した明細書、特許請求の範囲又は図面に記載された事項の範囲内においてなされたものである。

(2)訂正事項2について
訂正事項2は、本件訂正前の請求項2に記載された「造粒焼結粒子の顆粒強度」の上限を「5000MPa以下」から「1000MPa以下」にさらに限定するものであるから、特許法第120条の5第2項ただし書第1号に掲げる特許請求の範囲の減縮を目的とするものであり、実質上特許請求の範囲を拡張し、又は変更するものではない。
また、訂正事項2は、本件明細書の【0030】の「顆粒強度は5000MPa以下であるのが好ましく、2500MPa以下であるのがより好ましく、1000MPa以下(例えば800MPa以下)であるのが特に好ましい。」との記載に基づくものであるから、願書に添付した明細書、特許請求の範囲又は図面に記載された事項の範囲内においてなされたものである。

(3)訂正事項3について
訂正事項3は、以下のとおり、誤記の訂正を目的とするものと認める。
本件明細書の【0064】には、「典型的には、使用する材料に対して焼成温度が高い程、および/または、焼成時間が長い程、焼結が進行して顆粒強度の高い造形用材料を得ることができる。」と記載されている。また、実施例の評価に関し、【0093】には、「しかしながら、例えば例4に示されるように、造形用材料の顆粒強度が高すぎる場合(10000MPa)は、セラミック粉末と金属粉末との焼結が十分に進行性して通常の二次粒子の形態に基づく効果が低減されたものと考えることができる。」と記載されており、表1の例4の造形用材料は焼結が十分に進行したものであると理解できる。そうしてみると、セラミック粉末と金属粉末との配合が例4と同じ例5?8において、造形用材料の顆粒強度が例4よりも小さいことから、例4の造形用材料は、例5?8の造形用材料よりも、高い焼結温度で焼成されたものであると理解するのが自然である。
以上を併せ勘案すると、本件訂正前の明細書【0080】の「例の番号が増えるごとに焼結温度を10℃高くした。」との記載は、「例の番号が増えるごとに焼結温度を10℃低くした。」との記載の誤記であると解するのが合理的であるから、訂正事項3は、特許法第120条の5第2項ただし書第2号に掲げる誤記の訂正を目的とするものであると認められる。
そして、訂正事項3は、願書に最初に添付した明細書、特許請求の範囲又は図面に記載された事項の範囲内においてなされたものであって、実質上特許請求の範囲を拡張し、又は変更するものでもない。

3 小括
以上のとおりであるから、本件訂正は、特許法第120条の5第2項ただし書第1号及び第2号に掲げる事項を目的とするものであり、かつ、同条第9項において準用する同法第126条第5項及び第6項の規定に適合するものである。
したがって、本件特許の明細書及び特許請求の範囲を、訂正請求書に添付された訂正明細書及び訂正特許請求の範囲のとおり、訂正後の請求項〔1?8〕について訂正することを認める。

第3 本件発明
前記第2のとおり、本件訂正の請求は適法にされたものであり認容できるから、本件特許の請求項1?8に係る発明は、訂正特許請求の範囲の請求項1?8に記載された事項により特定される次のとおりのものであると認められる(以下、各請求項に係る発明を項番号に合わせて「本件発明1」などといい、まとめて「本件発明」という。)。
「【請求項1】
粉末積層造形に用いる造形用材料であって、
セラミックを含む第1粉末と、金属を含む第2粉末と、を含み、
前記第1粉末と、前記第2粉末とは、焼結により結合されて造粒焼結粒子を構成しており、
前記造粒焼結粒子の顆粒強度は、10MPa以上2500MPa以下であって、
平均粒子径は50μm以下である、造形用材料。
【請求項2】
前記造粒焼結粒子の顆粒強度は、10MPa以上1000MPa以下である、請求項1に記載の造形用材料。
【請求項3】
平均粒子径は、1μm以上100μm以下である、請求項1または2に記載の造形用材料。
【請求項4】
前記第1粉末および前記第2粉末の平均粒子径は、0.1μm以上20μm以下である、請求項1?3のいずれか1項に記載の造形用材料。
【請求項5】
前記第1粉末と前記第2粉末との合計に占める、前記第2粉末の割合は、10質量%以上90質量%以下である、請求項1?4のいずれか1項に記載の造形用材料。
【請求項6】
前記第1粉末は炭化物セラミックである、請求項1?5のいずれか1項に記載の造形用材料。
【請求項7】
請求項1?6のいずれか1項に記載の造形用材料の三次元造形物である、物品。
【請求項8】
請求項1?6のいずれか1項に記載の造形用材料を用いて三次元造形を行う、三次元造形物の製造方法。」

第4 取消理由通知に記載した取消理由について
1 取消理由の概要
当審が令和 2年12月 8日付けで特許権者に通知した取消理由は、本件訂正前の請求項1?8に係る特許は特許法第36条第4項第1号に規定する要件(実施可能要件)を満たしていない特許出願に対してされたものであり取り消されるべきものである、というものであり、特に、「顆粒強度の測定」及び「顆粒強度と焼結温度の関係」について指摘したものである。

2 取消理由(実施可能要件)についての当審の判断
(1)顆粒強度の測定について
顆粒強度の測定についての指摘は、要するに、発明の詳細な説明に記載の測定方法では、任意の10個以上の造粒焼結粒子の破壊強度σの算術平均値である顆粒強度として9.7?4854MPaの範囲外のものにはなり得ないにもかかわらず、本件明細書の表1には、顆粒強度として1MPaや5000MPa、10000MPaといった値が示されており、どのようにして「顆粒強度は、1MPaを超えて10000MPa未満」であるか否かを判別するのかを、当業者が理解することができない、というものである。
しかしながら、前記訂正事項1により、請求項1に記載された造粒焼結粒子の顆粒強度の範囲が、「10MPa以上2500MPa以下」に訂正されたことで、発明の詳細な説明に記載の測定に使用された、株式会社島津製作所製微小圧縮試験機MCT-500の試験力の範囲内(9.7?4854MPa)に含まれるものになった。
したがって、どのようにして「顆粒強度は、10MPa以上2500MPa以下」であるか否かを判別するかを、当業者が理解することができるものと解するのが相当であるから、本件明細書の発明の詳細な説明の記載は、当業者が本件発明を実施できる程度に明確かつ十分に記載したものであり、前記取消理由(1)は妥当しない。

(2)顆粒強度と焼結温度の関係について
顆粒強度と焼結温度の関係についての指摘は、要するに、本件明細書【0080】に記載の例における焼結温度と顆粒強度との関係が、本件明細書【0064】の記載内容と矛盾する結果、顆粒強度と焼結温度の関係を理解することができず、どのようにして、「顆粒強度は、1MPaを超えて10000MPa未満」に制御するのかを、当業者は理解することができない、というものである。
しかしながら、前記訂正事項3により、本件明細書の【0080】の焼結温度の記載が、【0064】の記載と矛盾しない記載に訂正され、顆粒強度と焼結温度の関係を理解することができるものとなったので、前記取消理由(2)は妥当しない。

(3)小括
以上のとおりであるから、前記取消理由に理由はない。

第5 取消理由通知において採用しなかった特許異議申立理由について
1 特許異議申立理由の概要
申立人が主張する特許異議申立理由のうち、前記第4の取消理由において採用しなかったものは、概略、以下のとおりである。

(1)申立理由1(新規性欠如)
本件訂正前の請求項1?8に係る発明は、甲第1号証又は甲第2号証に記載された発明であるから、その特許は、特許法第29条第1項の規定に違反してされたものであり、取り消されるべきものである。(特許異議申立書第33頁第20行?第48頁第22行)

(2)申立理由2(進歩性欠如)
本件訂正前の請求項1?8に係る発明は、甲第1号証に記載された発明及び周知技術に基いて、又は甲第2号証に記載された発明及び周知技術に基いて、当業者が容易に発明をすることができたものであるから、その特許は、特許法第29条第2項の規定に違反してされたものであり、取り消されるべきものである。(特許異議申立書第33頁第20行?第48頁第22行)

(3)申立理由3(実施可能要件違反)
本件訂正前の請求項1?8に係る特許は、次のア?ウの点からみて、特許法第36条第4項第1号に規定する要件を満たしていない特許出願に対してされたものであり、取り消されるべきものである。

ア 記載不備1
本件発明と同様のWC-Coの粉末冶金法で作製される超硬合金(例えば、甲第9号証に示されるVM40)の圧縮強度でさえ4.7GPa(4700MPa)程度であるのに対し、本件発明において、顆粒の状態で5000MPa?10000MPaにも及ぶ強度が得られることは、当業者の技術常識からは、到底理解することができず、また、具体的な製造条件の記載もないため、これを実施することはできない。(特許異議申立書第29頁第6行?第11行)(以下、「記載不備1」という。)

イ 記載不備2
本件明細書には具体的な焼結温度の数値が一切記載されておらず、焼結温度について、「焼結温度は、用いた金属粉末における金属の融点(Tm)の9割程度の温度(0.9×Tm℃)とした。」と記載されているにすぎず、甲第1号証の記載に鑑みれば、本件発明における金属の融点がどの程度の温度であるか不明である。そのため、本件発明において規定する範囲を実現するために、当業者に過度の試行錯誤を強いることは明らかである。(特許異議申立書第29頁第12行?第30頁第12行)(以下、「記載不備2」という。)

ウ 記載不備3
本件明細書の表1をみると、本件訂正前の請求項1に係る発明の範囲である、顆粒強度が5000MPaである例16と、本件訂正前の請求項1に係る発明の範囲外である顆粒強度が1MPaである例8とで、造形物の気孔率がいずれも「10%以下」「○」と評価され、1層厚みもともに35μmであり、本件発明の課題・目的である「課題・目的」である「高密度な造形物」「効率的な造形」という点で差異がないから、当業者といえども本件発明の課題と前記数値による特定との実質的な関係を理解できず、本件発明に対応する課題の解決手段を理解できないから、本件発明の技術上の意義が不明である。(特許異議申立書第30頁第13行?第31頁第14行)(以下、「記載不備3」という。)

(4)申立理由4(サポート要件違反)
本件訂正前の請求項1?8に係る特許は、次のアの点からみて、特許法第36条第6項第1号に規定する要件を満たしていない特許出願に対してされたものであり、取り消されるべきものである。

ア 記載不備4
本件特許明細書の発明の詳細な説明の実施例には、粉末積層造形法の中でも、粉末床溶融結合法において顆粒強度とその効果との関係が確認されているに過ぎず、指向性エネルギー堆積法を含む他の「粉末積層造形」については、顆粒強度の範囲と課題や効果との関係についての記載がないため、出願時の技術常識に照らしても、あらゆる粉末積層造形に係る発明の範囲まで、発明の詳細な説明に開示された内容を拡張ないし一般化できるとはいえない。(特許異議申立書第31頁第16行?第32頁第26行)(以下、「記載不備4」という。)

(5)申立理由5(明確性要件違反)
本件訂正前の請求項1?8に係る特許は、次のア、イの点からみて、特許法第36条第6項第2号に規定する要件を満たしていない特許出願に対してされたものであり、取り消されるべきものである。

ア 記載不備5
本件訂正前の請求項1に係る造粒焼結粒子の顆粒強度に係る数値による限定「1MPaを超えて10000MPa未満」は、その技術的意味が明細書を参照しても明らかでなく、当業者は本件発明の外延を理解することができないから、本件発明は不明確である。(特許異議申立書第32頁下から2行?第33頁第3行)(以下、「記載不備5」という。)

イ 記載不備6
本件明細書には、表1の「造形性」について、その「◎○×」の意味が記載されておらず、また、表1の「均一性」については、出願人の主観によるものであるから、これらの評価値を、本件発明の技術的範囲を特定するための指標とすることはできない。(特許異議申立書第33頁第4行?第18行)(以下、「記載不備6」という。)

2 甲各号証とその記載内容
(1)甲各号証
申立人が提出した証拠方法は、以下のとおりである。
・甲第1号証:国際公開第2015/162206号及び訳文
・甲第2号証:国際公開第2012/002475号
・甲第3号証:特表2017-519101号公報(甲第1号証の公表公報)
・甲第4号証:五日市, “溶射用粉末材料 -サーメット-”, 電気製鋼, 電気製鋼研究会, 2003年10月15日, 第74巻, 第4号, p.259-265
・甲第5号証:特開2002-220652号公報
・甲第6号証:“3Dプリンター用ガスアトマイズ粉末”, 山陽特殊製鋼技報, 山陽特殊製鋼株式会社, 2015年6月17日, 第22巻, 第1号, p.62-64
・甲第7号証:特開平5-186859号公報
・甲第8号証:“微小圧縮試験機 MCT-Wシリーズ”, [online], 株式会社島津製作所, [2020年08月20日検索], インターネット(インターネットアーカイブ WAYBACK MACHINEにおいてJAN24.2010付けで所蔵)
・甲第9号証:“製品総合カタログ”, [online], 2007年9月1日, 日本タングステン株式会社, [2020年8月20日検索], インターネット(インターネットアーカイブ WAYBACK MACHINEにおいてJAN16.2014付けで所蔵)

(2)甲各号証の記載内容
前記甲第1号証及び甲第2号証は、前記申立理由1、2(新規性進歩性欠如)における主たる証拠であり、甲第4号証?甲第7号証は、同申立理由における本件出願時の周知技術を立証するための証拠であり、甲第8号証は、前記第4において検討した取消理由に関連する証拠であり、甲第9号証は、前記申立理由3(実施可能要件違反)を立証するための証拠であるから、ここでは、甲第1号証及び甲第2号証の記載内容を中心に摘記し、甲第4号証?甲第7号証についてはその概要のみを示すこととする。なお、甲第1号証は英語表記であるため、仮訳の作成に際しては、その公表公報である甲第3号証も申立人提出の訳文と併せて参照した。

ア 甲第1号証の記載内容
甲第1号証には、以下(1a)?(1e)の記載がある(当審注:「・・・」は当審による省略を表す。下線は当審による。以下、同様)。

(1a)「TECHNICAL FIELD
The present disclosure relates to a method of making a powder of dense and spherically shaped cemented carbide or cermet granules. The present disclosure also relates to a powder produced by the method and use of said powder in additive manufacturing such as 3D printing by the binder jetting technique.」(第1頁第3?7行)
(当審仮訳:技術分野 本開示は、緻密な球状の超硬合金又はサーメット顆粒の粉末の作製方法に関する。本開示は、当該方法により生産された粉末、及び、結合剤噴射技術による3D印刷などの付加製造における前記粉末の使用にも関する。)

(1b)「The forming of spherically shaped granules comprising metal, hard constituents and organic binder is preferably performed by spray drying. The organic binder can for example be PEG (polyethylene glycol). The metal is typically Cobalt (Co) or a mixture of Co and one or more of Nickel (Ni), Iron (Fe), Chromium (Cr) and Molybdenium (Mo). The hard constituents may for example be WC, TiC, TiN, Ti(C,N) and/or NbC. The step of providing the granules with a spherical shape is important since the subsequent heating process will ideally make the granules to shrink but preserve their original spherical shape.」(第6頁第12?18行)
(当審仮訳:金属、硬質成分、及び有機結合剤を含む球状顆粒の形成は、好ましくは噴霧乾燥によって実施される。有機結合剤は、例えばPEG(ポリエチレングリコール)であり得る。金属は典型的に、コバルト(Co)であるか、又は、Coとニッケル(Ni)、鉄(Fe)、クロム(Cr)、及びモリブデン(Mo)のうち一以上との混合物である。硬質成分は、例えば、WC、TiC、TiN、Ti(C,N)及び/又はNbCであり得る。後続する熱処理が顆粒を収縮させつつも元の球形状は維持することが理想的であるので、球形状を有する顆粒を提供する工程は重要である。)

(1c)「In one embodiment of the present disclosure, the porosity inside each dense cermet or cemented carbide spherically shaped granule is less than 5 vol%, such as < 1 vol%, such as < 0.5 vol%. A low porosity is advantageous in applications benefitted by high green body densities and for which the obtainment of a high green density depends upon solid incompressible granules' ability to redistribute into a dense packing arrangement (e.g. gauged by TAP density). In such applications, the internal porosity of the spherically shaped granules adds to the porosity between the granules to make up the overall porosity and thereby shrinkage of the finally produced dense body. 3D printing by binder jetting and HIP constitute examples of such applications.

In one embodiment of the present disclosure, the size of the sintered dense spherically shaped granules in the cermet or cemented carbide powder is distributed between 1-500 μm, more typically between 5-200 μm. Alternatively, the sintered dense spherically shaped granules are < 50 μm, such as < 30 μm. When using this powder for 3D printing of green bodies aimed to become subsequently sintered to almost full density or at least closed porosity, the spherically shaped granule size is preferably below 50 μm, such as below 30 μm. But even more important for such an application, the granule size fraction below 10 μm constitutes more than 10 wt% or more preferably 20 wt% of the complete distribution. In HIP applications the preferred continuous particle size distribution of the spherically shaped granules size is in the range of from about 5 to about 500 μm, such as about 10 to about 200 μm.」(第8頁第26行?第9頁第11行)
(当審仮訳:本開示の一実施態様で、緻密なサーメット又は超硬合金の球状顆粒の各々の内部の気孔率は5vol%よりも低くてよく、例えば1vol%未満、例えば0.5vol%未満である。グリーンボディの密度が高いことが有益であり得る用途においては気孔率が低いことが有利であるので、高いグリーンボディ密度の取得は、固体の非圧縮性顆粒の緻密なパッキング配置への再分配能力(例えばTAP密度によって測定される)に依存する。そのような用途では、球状顆粒内部の気孔率が粒間の気孔率に加えられて全体としての気孔率となり、これにより最終的に生産される緻密体の収縮率となる。そのような用途の例は、結合剤噴射及びHIPによる3D印刷で構成される。

本開示の一実施態様で、サーメット又は超硬合金粉末の焼結された緻密な球状顆粒の粒径が、1-500μmの間、より典型的には5-200μmの間に分布する。代替的に、焼結された緻密な球状の粒径は50μm未満、例えば30μmであり得る。この粉末を、後で焼結してほぼ最大密度もしくは少なくとも閉鎖気孔率まで焼結されることを目的とするグリーンボディの3D印刷に使用する場合、球状顆粒の粒径は好ましくは、50μmを下回り、例えば30μmを下回る。しかし、そのような用途で更に重要なことは、10μmを下回る粒径を有する部分が、全分布のうち10wt%よりも多く、又はより好ましくは20wt%よりも多くを構成することである。HIP用途では、球状顆粒の粒径の好ましい連続的な粒度分布が、約5?約500μm、例えば約10?約200μmの範囲内にある。)

(1d)「In one embodiment of the present disclosure, the heat treatment in the furnace chamber is performed at a sintering temperature ranging of about 30°C to about 100 °C, or from 30°C to 100°C, above the solidus temperature of the metal in the spherically shaped granules. Alternatively the sintering is performed at a sintering temperature of more than about 100 °C, or from 100 °C, above the solidus temperature.」(第9頁第29?33行)
(当審仮訳:本開示の一実施態様で、炉室内での熱処理は、球状顆粒中の金属の固相線温度を約30℃?約100℃の範囲、又は約30℃?100℃上回る焼結温度で実施される。代替的に、焼結が、固相線温度を約100℃よりも上回る、又は100℃以上上回る焼結温度で、実施されてもよい。)

(1e)「Example 1 - inhibitor powder of yttrium oxide
Granules were formed from a slurry comprising powders of WC, Co, Cr, PEG and ethanol. The average grain size of the WC and the Co powder were 0.8 μm any 1.3 μm respectively. The slurry was spray dried in a Niro-spray drying equipment. The spray dried granules formed were sieved on a 63 μm net to leave only the smallest fraction from the granulated powder.

In this example the final cemented carbide to be formed was a 10 wt% Co, 0.45 wt% Cr_(3) C_(2) and 89.44 wt% WC material and the relative composition of the powders in the slurry were adapted therefor. The spray dried granules comprised about 2 wt% PEG.
・・・
Two different sintering temperatures were evaluated, 1370°C and 1410°C in vacuum environment. The liquid temperature of the metal (Co and Cr) in the granules is about 1307°C.
・・・
The granule size of the sintered dense spherically shaped granules of the cemented carbide powder sintered at 1410°C was d(0.1): 22.4 μm, d(0.5): 32 μm and d(0.9): 46 μm. Several through cuts spherically shaped granules were studied showing a porosity of less than 0.02 vol% ( (当審仮訳:実施例1‐酸化イットリウムの阻害剤粉末
WC、Co、Cr、PEG、及びエタノールの粉末を含むスラリから顆粒が形成された。WC及びCo粉末の平均粒径はそれぞれ、0.8μmと1.3μmであった。Niro噴霧乾燥機器でスラリが噴霧乾燥された。形成された噴霧乾燥顆粒は63μmネットでふるい分けされ、顆粒粉末のうち最小の部分のみが残った。

この実施例で、最終的に形成されるべき超硬合金の材料は、10wt%のCo、0.45wt%のCr_(3)C_(2)、及び89.44wt%のWCであり、これに粉末のスラリ中の相対的な組成を適応させた。噴霧乾燥した粒は、約2wt%のPEGを含んでいた。
・・・
真空環境下で、1370℃及び1410℃の異なる2つの焼結温度が評価された。顆粒中の金属(Co及びCr)の液温は約1307℃である。
・・・
1410℃で焼結した超硬合金粉末の焼結された緻密な球状顆粒の粒径は、d(0.1):22.4μm,d(0.5):32μm、及びd(0.9):46μmであった。0.02vol%よりも低い(<A02)気孔率を示すスルーカット(through cuts)球状顆粒が幾つか観察された。)

イ 甲第2号証の記載内容
甲第2号証には、以下(2a)?(2c)の記載がある。
(2a)「[0001] 本発明は、低温プロセス溶射用途で使用される溶射用粉末、及びその溶射用粉末を用いた溶射皮膜の形成方法に関する。
・・・
[0013] 本実施形態の溶射用粉末は、造粒-焼結サーメット粒子からなる。各造粒-焼結サーメット粒子は、セラミックス微粒子及び金属微粒子が凝集してなる複合粒子であり、セラミックス微粒子及び金属微粒子の混合物を造粒して得られる造粒物(顆粒)を焼結することにより製造される。
・・・
[0016] 造粒-焼結サーメット粒子の製造に使用されるセラミックス微粒子は、炭化タングステンや炭化クロムなどの炭化物、ホウ化モリブデンやホウ化クロムなどのホウ化物、窒化アルミニウムなどの窒化物、ケイ化物及び酸化物からなる群より選ばれる少なくとも一種を含む硬質セラミックスからなることが好ましい。」

(2b)「[0023] 造粒-焼結サーメット粒子の平均径(体積平均径)の上限は30μmである。造粒-焼結サーメット粒子の平均径が30μm以下である場合には、造粒-焼結サーメット粒子が溶射時に加熱されやすいために、溶射用粉末の付着効率が向上する。また、溶射用粉末から形成される溶射皮膜の緻密度が増す結果、溶射皮膜の硬度及び耐摩耗性も向上する。
・・・
[0027] 造粒-焼結サーメット粒子の圧縮強度は100?600MPaである。この場合、造粒-焼結サーメット粒子が溶射時に加熱されやすいために、溶射用粉末の付着効率が向上する。なお、造粒-焼結サーメット粒子の圧縮強度の測定は、例えば、株式会社島津製作所製の微小圧縮試験装置“MCTE-500”を用いて行うことができる。
[0028] 造粒-焼結サーメット粒子の圧縮強度は、200MPa以上であることが好ましい。造粒-焼結サーメット粒子の圧縮強度が高くなるにつれて、溶射用粉末から形成される溶射皮膜の硬度及び耐摩耗性が向上する。
[0029] また、造粒-焼結サーメット粒子の圧縮強度は、500MPa以下であることが好ましく、より好ましくは400MPa以下である。造粒-焼結サーメット粒子の圧縮強度が低くなるにつれて、溶射用粉末の付着効率が向上する。」

(2c)「[0049] 表2の“造粒-焼結サーメット粒子の組成”欄には、各溶射用粉末の造粒-焼結サーメット粒子の化学組成を示す。同欄中、“WC-12%Ni”は12質量%のニッケルと残部の炭化タングステンのサーメットを表す。
・・・
[0053] 表2の“圧縮強度”欄には、各溶射用粉末の造粒-焼結サーメット粒子の圧縮強度を測定した結果を示す。具体的には、式:σ=2.8×L/π/d^(2)に従って算出される10個の造粒-焼結サーメット粒子の圧縮強度σ[単位MPa]の平均値を示す。上式中、Lは臨界荷重[単位N]を表し、dは造粒-焼結サーメット粒子の平均径[単位mm]を表す。臨界荷重は、一定速度で増加する圧縮荷重を圧子で造粒-焼結サーメット粒子に加えたときに、圧子の変位量が急激に増加する時点において造粒-焼結サーメット粒子に加えられた圧縮荷重の大きさである。この臨界荷重の測定には、(株)島津製作所製の微小圧縮試験装置“MCTE-500”を使用した。
・・・
[0056] 表2の“皮膜形成能(その2)”欄には、表1に示す条件で各溶射用粉末を溶射したときに実用上好適な厚さの溶射皮膜を形成することができるか否かに基づいて各溶射用粉末の皮膜形成能を評価した結果を示す。具体的には、複数パスの繰り返しにより150μmの厚さの溶射皮膜を形成することができた場合には良(○)、150μmの厚さの溶射皮膜を形成することはできなかったが、100μmの厚さの溶射皮膜を形成することができた場合には可(△)、複数パスを繰り返しても100μmの厚さの溶射皮膜を形成することができなかった場合には不良(×)と評価した。
・・・
[0057]
[表1]

[0058][表2]



ウ 甲第4号証の記載内容(顆粒強度に関する事項)
甲第4号証には、「溶射用粉末材料・サーメット」と題して、市販されているサーメット溶射材料の例、造粒-焼結法、及び、顆粒強度と1次粒子サイズの影響について記載され、具体的には、焼結温度が高くなるほど、構成する一次粒子の粒成長が促進され、顆粒強度は高くなることや、顆粒強度の異なるCr_(3)C_(2)/25%NiCr粉末として、顆粒強度が165MPa、440MPa、725MPaのものが記載されている(特に、「4.顆粒強度と1次粒子サイズの影響」という項目を参照した。)。

エ 甲第5?7号証の記載内容(溶射に関する事項)
甲第5号証には、「溶射用粉末およびその製造方法」(発明の名称)について記載され、具体的には、溶射用の粉末が肉盛りスプレーに用いられたり、逆に肉盛りやスプレー用の粉末が溶射に用いられること)や、造粒-焼結法によって調製されたサーメット粉末はそのまま溶射用粉末として使用されることなどが記載されている(特に、【0004】、【0010】を参照した。)。
甲第6号証には、「3Dプリンター用ガスアトマイズ粉末」と題して、金属粉末の方式には大まかにパウダーベット方式とデポジション方式の2種類があり、デポジション方式は、溶射や溶接に類似していることが記載されいている(特に、62ページを参照した。)。
甲第7号証には、「溶射による3次元物品の製作方法及び装置」(発明の名称)について記載され、具体的には、材料の薄い層を徐々に積み上げて3次元物品を創出するためのプロセスには、3次元印刷やニアネット溶射が含まれることが記載されている(特に、【0002】を参照した。)。

3 申立理由1、2(新規性進歩性欠如)についての当審の判断
(1)甲第1号証を主引用例とする場合について
ア 甲第1号証に記載された発明
前記2(2)ア(1a)?(1e)の記載を、実施例1の「造粒-焼結サーメット粒子」に注目して整理すると、甲第1号証には、
「3D印刷などの付加製造に使用される密な球状の超硬合金粉末であって、
WC粉末とCo粉末を含み、
前記WC粉末とCo粉末は焼結され超硬合金粉末を構成し、
焼結した超硬合金粉末の焼結された緻密な球状顆粒の粒径は、d(0.5):32μmである、
超硬合金粉末。」
の発明(以下、「甲1発明」という。)が記載されているといえる。

イ 本件発明1について
(ア)対比
本件発明1と甲1発明とを対比すると、少なくとも以下の点で相違する。
・相違点1:本件発明1は、「造粒焼結粒子の顆粒強度」を「10MPa以上2500MPa以下」の範囲に特定しているのに対し、甲1発明は、「超硬合金粉末」の顆粒強度の範囲を特定しておらず、その値が明らかでない点。

(イ)相違点1についての検討
以下、前記(ア)の相違点1について検討する。
甲1発明は、3D印刷などの付加製造に適した粉末として、密な球状の超硬合金粉末を提供しようとするものであるが、当該粉末の品質や特性として、そもそも「顆粒強度」には着目しておらず、そのような記載も示唆も見当たらない。本件発明1においては、造粒焼結粒子の顆粒強度を、造形のためのエネルギーによる造粒焼結粒子の崩壊や飛散を抑制すべく、顆粒強度の下限を設定する一方、造粒焼結粒子の溶融が困難にならないよう、その上限を設定したものであるが、甲第1号証には、そのような顆粒強度の範囲を設定することによる作用・効果についての記載もない。そうしてみると、甲1発明において、造粒焼結粒子の顆粒強度を、特定の範囲に調製する動機付けは存在しない。
また、前記ア(1d)、(1e)に記載されているように、甲1発明に関する粉末の焼結温度等の製造条件、気孔率等の製造条件、及び超硬合金粉末等の物性値は、本件発明1のそれと同じであるとは認められないから、甲1発明の超硬合金粉末の顆粒強度が、本件発明1において特定される顆粒強度の範囲に含まれるものとも認められない。
当該相違点1に係る本件発明1の構成ついて、申立人は、甲第2号証又は甲第4号証に記載された特定の粉末の顆粒強度(周知技術)にみられるように、本件発明1おける顆粒強度の数値範囲は至極一般的なものであるから、当該構成は、甲1発明が当然に具備する構成であるとか、甲1発明における単なる設計事項の範疇のものである旨主張するので、ここで検討すると、これらの証拠には、確かに低温プロセス溶射用途で使用される溶射用粉末としての造粒-焼結サーメット粒子として、圧縮強度が100?600MPaのもの(上記2(2)イ(2b)など)や、サーメット溶射材料であるCr_(3)C_(2)/25%NiCr粉末として、顆粒強度が165MPaのもの(上記2(2)ウ)などが記載されており、それらの数値だけをみれば本件発明1の顆粒強度の数値範囲内に当たるものを認めることができる。しかしながら、この事実はあくまで特定の粒子についてであり、甲1発明を含めた、造粒焼結粒子全般について広く当てはまる事項であるとまでいうことはできない。また、このような特定の粒子の顆粒強度を、甲1発明において採用しなければならない事情も見当たらないのであるから、当該主張を採用して本件発明1が新規性及び進歩性を欠如するということはできない。
したがって、本件発明1は、甲第1号証に記載された発明であるといえないし、また、甲第1号証に記載された発明及び申立人のいう周知技術に基いて、当業者が容易に発明をすることができたものであるともいえない。

ウ 本件発明2?8について
本件発明2?8は、本件発明1を引用するものであって、本件発明1の発明特定事項を全て含むものであるから、前記イに示した理由と同様の理由により、甲第1号証に記載された発明に対して新規性及び進歩性を欠如するということはできない。

(2)甲第2号証を主引用例とする場合について
ア 甲第2号証に記載された発明
前記2(2)イ(2a)?(2c)の記載を、実施例7の「造粒-焼結サーメット粒子」に注目して整理すると、甲第2号証には、
「低温プロセス溶射用途で使用される溶射用粉末であって、
溶射用粉末は、造粒-焼結サーメット粒子からなり、該造粒-焼結サーメット粒子は、WC及びCoが凝集してなる複合粒子であり、
圧縮強度が250MPaであり、
造粒-焼結サーメット粒子の平均径が14.3μmである溶射用粉末。」
の発明(以下、「甲2発明」という。)が記載されているといえる。

イ 本件発明1について
(ア)対比
本件発明1と甲2発明とを対比すると、少なくとも以下の点で相違する。
相違点2:本件発明1は、「粉末積層造形」に用いる材料に関するものであるのに対し、甲2発明は、「低温プロセス溶射」に用いる材料に関するものである点。

(イ)相違点2についての検討
以下、前記(ア)の相違点2について検討すると、
甲第2号証には、「低温プロセス溶射」に適した溶射用粉末を得るために、造粒-焼結サーメット粒子の平均径、造粒-焼結サーメット粒子の圧縮強度を含む物性値を調整する記載はあるものの、当該造粒-焼結サーメット粒子を「粉末積層造形」用途として用いることに関する記載も示唆もない。したがって、甲2発明の「低温プロセス溶射」に適した溶射用粉末を、粉末積層造形用途とする動機付けは存在しない。
当該相違点2に係る本件発明1の構成について、申立人は、甲第5号証?甲第7号証に記載されているように、溶射と肉盛りに定義の差はなく、溶射用の粉末も溶射に限定されるわけではなく、肉盛りにも用いられる点や粉末積層造形には溶射も含まれる点は周知の事項であり、溶射用粉末も「肉盛」や「粉末積層造形」に用いる粉末と異なるところがないことも周知の事項であるから、当該相違点2は実質的な相違点ではないか、当該構成は、類似の技術分野における粉末を単に適用・転用したにすぎない旨主張するので、ここで検討すると、たとえ「低温プロセス溶射」に適した溶射用粉末を、「粉末積層造形」用途に用いることが周知であったとしても、「低温プロセス溶射」に適した溶射用粉末に求められる物性値と、「粉末積層造形」用途に求められる物性値が同じであるとの証拠はないのであるから、甲2発明に係る特定の物性を有する溶射用粉末自体が、本件発明1のような粉末積層造形に用いる造形用材料として用いることを予定したものであるということはできず、当該主張を採用することはできない。
したがって、本件発明1は、甲第2号証に記載された発明であるとも、当該発明と申立人のいう周知技術基いて当業者が容易に発明をすることができたものともいえない。

ウ 本件発明2?8について
本件発明2?8は、本件発明1を引用するものであって、本件発明1の発明特定事項を全て含むものであるから、前記イに示した理由と同様の理由により、甲第2号証に記載された発明に対して新規性及び進歩性を欠如するということはできない。

4 申立理由3に対する判断
(1)記載不備1について
本件訂正により、本件発明1の「顆粒強度」の範囲は、「10MPa以上2500MPa以下」に限定されたため、前記第5の1(3)で実施できないと主張された「顆粒強度」の範囲(5000MPa?10000MPa)は、本件発明1の発明特定事項ではなくなったため、前記記載不備1は解消されたものと認められる。

(2)記載不備2について
本件明細書には、「焼成の温度は、一次粒子の粒径にもよるが、概ね、例えば、第2粉末における金属の(融点×0.8?0.95)程度の温度を目安に好適に設定することができる」(【0064】)、「焼結温度は、用いた金属粉末における金属の融点(Tm)の9割程度の温度(0.9×Tm℃)とした。」(【0080】)等と記載されており、当該記載を素直に読めば、金属粉末として採用した金属の融点を基準として設定したものと解することができ、本件明細書の表1の実施例を例に取ると、金属粉末であるCoやNiCrの融点の0.9倍の温度を焼結温度としたものであると解される。そうしてみると、第2粉末として採用した金属の融点から焼結温度を設定することは、当業者が過度な試行錯誤なくなし得るものといえる。また、焼成時間の具体的な値が本件明細書に記載されていなくとも、焼成の進行状況をもとに焼成時間を設定することは、当業者が通常行う事項であるといえ、この点についても過度な試行錯誤を要するとは認められない。

(3)記載不備3について
前記1(3)ウで具体的に指摘する例8(顆粒強度が1MPa)、例16(顆粒強度が5000MPa)で示された顆粒強度は、本件訂正により、本件発明1で特定する顆粒強度の範囲外になったため、前記記載不備3に理由はない。また、本件発明1の範囲内の例(例えば、例2、3、6、7)と、本件発明1の範囲外の例(例えば、例1、4、5、8)とを比較すると、造形物の気孔率、1層厚み、造形性は、本件発明1の範囲内の例の方がいずれも良好な特性を有しているものと認められる。してみれば、当業者が本件発明の課題と顆粒強度の数値による特定との関係は理解できるものといえるため、前記記載不備3は解消されたものと認められる。

5 申立理由4に対する判断
(1)記載不備4について
ア サポート要件違反について
特許請求の範囲の記載が、明細書のサポート要件に適合するか否かは、特許請求の範囲の記載と発明の詳細な説明の記載とを対比し、特許請求の範囲に記載された発明が、発明の詳細な説明に記載された発明で、発明の詳細な説明の記載により当業者が当該発明の課題を解決できると認識できる範囲のものであるか否か、また、その記載や示唆がなくとも当業者が出願時の技術常識に照らし当該発明の課題を解決できると認識できる範囲のものであるか否か(以下では、両範囲をまとめて「当業者において課題解決できると認識できる範囲」という。)を検討して判断すべきものであると解される。

イ 本件発明の課題について
本件発明の課題は、発明の詳細な説明の【0007】によれば、「粉末積層造形に用いるための粉末状の造形用材料であって、セラミックを含みながらも高密度な造形物をより効率的に造形することが可能な新規な造形用材料を提供すること」であると認められる。

ウ 本件発明の課題に関連する記載について
本件発明の課題に係る特性、すなわち、「高密度な造形物」、「効率的な造形」に着目しながら、発明の詳細な説明をみると、以下(ア)?(ウ)の記載を認められる。

(ア)「【0030】
(顆粒強度)
造形用材料を構成する造粒焼結粒子の顆粒強度は、1MPaを超えるように規定することができる。これにより、造形のためのエネルギーにより造粒焼結粒子が崩壊したり、飛散したりするのを好適に抑制することができる。その結果、造形エリアへの材料粉末の供給が安定するため、ムラの無い高品質な造形物を造形できるために好ましい。なお、おおよその目安として、例えば、バインダにより造粒一体化された造粒粒子は、顆粒強度が1MPaに満たないと考えることができる。造粒焼結粒子の顆粒強度は、10MPa以上であるのが好ましく、50MPa以上であるのがより好ましく、100MPa以上(例えば200MPa以上)であるのが特に好ましい。しかしながら、発明者らの検討によると、顆粒強度が強すぎると、造形用材料を十分に溶融させるのが困難となるために好ましくない。また、顆粒強度強すぎる造粒焼結粒子は、概ね造粒されていない単一粒子と類似した構成となるまで焼結が進行し、球状化した粒子とその性状が似たものとなってしまう。かかる観点から、顆粒強度は10000MPa未満とする。顆粒強度は5000MPa以下であるのが好ましく、2500MPa以下であるのがより好ましく、1000MPa以下(例えば800MPa以下)であるのが特に好ましい。」

(イ)「【0032】
このような造形用材料は、第1粉末を構成する粒子(典型的には一次粒子である)および第2粉末を構成する粒子(典型的には一次粒子である)の間には間隙が存在する。そして個々の一次粒子間には間隙が形成され、一次粒子は互いに3次元的に結合される。これによって、造形用材料はエネルギー源(熱源)からエネルギーを受け取りやすく、溶解しやすいという利点がある。その結果、二次粒子間の間隙は容易に消失されて、例えば鋳型を使用して製造する焼結体(バルク体)に近い、緻密性の高い高硬度な造形物を得ることができる。」

(ウ)「【0036】
このように一次粒子の平均粒子径を微細にすることで、例えば、かかる造形用材料を構成する二次粒子自体の融点よりも低い温度で軟化または溶融させることができる。このことは、これまでに予想されていない、全く新しい知見であり得る。したがって、かかる造形用材料は、例えば、粉末積層造形において従来のエネルギー(例えば、レーザにおいてはレーザ出力)よりも低い状態で軟化または溶融させることができ、プロセスのコストダウンが可能となる。また、二次粒子の軟化または溶融効率が上がるため、例えば、レーザ走査速度を低下させることなく、さらにはレーザ走査速度を速めて、気孔率の少ない緻密な三次元造形物の作製が可能となる。これにより、例えば、当該造形用材料のバルクに近い特性を有する三次元造形物の作製が可能となる。」

これらの記載から、本件発明の課題としている、高密度な造形物のより効率的な造形を実現するためには、造形のためのエネルギーが造形焼結粒子にかかる際に、造粒焼結粒子が崩壊したり、飛散したりすることを抑制するため、顆粒強度の下限を設定する一方、造形用材料の溶融が困難とならない上限を設定することが重要であると理解できる。
そして、発明の詳細な説明の表1に示される実施例において、顆粒強度が10MPa(例7、18)、100MPa(例6、17)、300MPa(例2、3、9-11、14、20-22)である造粒焼結粒子からの造形物は、「高密度」であり、「効率的」に造形できたことが示されているから、当該実施例により、当業者が所定の顆粒密度を有する造粒焼結粒子が、前記課題を解決できるものと認識することができる。

エ 「当業者において課題解決できると認識できる範囲」の認定
前記ウに照らすと、実施例で示された選択的レーザ溶融法以外の粉末積層造形法であっても、造形のためのエネルギーが造粒焼結粒子に付与される他の粉末積層造形においても同様に、本件発明の課題を解決することができると解するのが相当である。
そうすると、前記実施例の記載や技術常識などに照らすと、前記実施例に記載された特定の粉末積層造形による造形用材料と同等の特性を発現し、もって、当業者が本件発明の課題が解決できると認識できる範囲として、本件発明1が規定するような、「造粒焼結粒子の顆粒強度は、10MPa以上2500MPa以下であって、平均粒子径は50μm以下である、造形用材料」を認めることができるから、結局、「当業者において課題解決できると認識できる範囲」は、本件発明1の範囲を包含するものと解するのが合理的である。

オ サポート要件適合性について
前記アの判断手法に照らして、特許請求の範囲の記載と発明の詳細な説明の記載とを対比し、特許請求の範囲に記載された発明が、前記エの「当業者において課題解決できると認識できる範囲」のものであるか否かを検討すると、前記エのとおり、本件発明1は、「当業者において課題解決できると認識できる範囲」のものであるし、本件発明2?8についても同様であるから、本件の特許請求の範囲の請求項1?8の記載は、サポート要件に適合するものである。

(2) 小活
以上のとおりであるから、申立理由4は、理由がない。

6 申立理由5に対する判断
(1)記載不備5、6について
前記第4の2(1)で検討したとおり、本件訂正により顆粒強度の範囲が「10MPa以上2500MPa以下」に限定されたため、本件発明の外延は理解できるものとなった。
また、本件発明1は、本件明細書の表1で示される「造形性」、「均一性」等の評価値が発明特定事項に含まれるものではないから、「造形性」、「均一性」等の評価方法のあり方によって本件発明1の明確性についての判断が左右されるものではない。
よって、申立理由5は、理由がない。

第6 令和 3年 4月 5日付けの意見書における申立人の主張について
申立人は、令和 3年 4月 5日付けの意見書にて、
「・・・顆粒強度は「算術平均値」であることが明確に記載されており、・・・「算術平均値」は測定値にばらつきがある場合に用いることは技術常識であり、・・・本件において、造粒焼結粒子は「任意の10個」を選定して測定されるのであるから、・・・個々の顆粒強度の中には10MPa未満のものが当然に含まれることになる。かかる10MPa未満の範囲は、微小圧縮試験装置(MCT-500)の試験力から算出可能な破壊強度の範囲の下限9.7MPa(?10MPa)を下回ることになることから、そのような測定は不可能であるから、・・・実施例の表1における例7,例18の10MPaの顆粒強度は、当業者の技術常識に照らしても評価・実施ができないものである。・・・微小圧縮試験装置の試験力の下限が、顆粒強度算出の元となる上記臨界荷重よりも十分に小さくなければ、臨界荷重は測定できない。・・・すなわち、臨界荷重を基にして算出される顆粒強度が10MPaとして測定されることはありえない。」(令和 3年 4月 5日付け意見書第3頁下から4行?第5頁第19行)
「さらに付言すると、本件訂正事項1及び2によって、特許請求の範囲が減縮されても、実施例で記載された1MPa、5000MPa及び10000MPaとして測定されたという事実的記載は残る。・・・本件明細書において1MPa、5000MPa及び1000MPaが測定できると解釈できない以上、前記効果等も把握することができないのであり、かかる点からも、発明を実施できる程度に明確かつ十分に記載されたものということはできない。試験力が広い微小圧縮試験装置があるのであれば、それで全て測定するのが自然であり、顆粒強度の大きい側および小さい側をそれで評価しながら、その間の顆粒強度は別の微小圧縮試験装置を用いるということは、不自然であると言わざるを得ない。・・・」(令和 3年 4月 5日付け意見書第5頁第21行?第6頁第16行)
「・・・すなわち、配合比が異なる例2、3、9、10、11であっても、顆粒強度が300MPaで一定であったものが、配合比としてはそれらに挟まれる例4においてのみ、焼結温度が同じでありながら、顆粒強度は二桁も異なる10000MPaを示すことになる。かかる挙動は当業者の技術常識に照らしても理解することができない。・・・しかしながら、本件明細書には、これら2500MPa以下および1000MPa以下にするための条件は記載されておらず、実施例においても、上記制御の基となるべき、Tmの具体的な数値やその精度・・・も一切記載されていない。」(令和 3年 4月 5日付け意見書第6頁第18行?第7頁第24行)
等と主張する。

しかしながら、任意の10個の造粒焼結粒子の顆粒強度を測定する際に、個々の顆粒強度の中に10MPa未満のものが当然含まれるとの主張を裏付ける具体的証拠は存在せず、個々の顆粒強度の中に10MPa未満のものが含まれるか否かは、測定対象となる造粒焼結粒子の顆粒強度のばらつきに依存するものであって、当然含まれるとまではいえないと解すべきである。
また、本件発明1の比較例に相当する例における顆粒強度を別の微小圧縮試験装置により測定した、とする特許権者の主張が不自然であるとしても、そのことをもって、当業者が本件発明1を実施できないとはいえない。また、本件発明1が実施可能であることは、前記第5の4で検討したとおりである。
さらに、実施例に具体的な条件が記載されていないとする主張については、第5の4(2)で検討したとおりであって、本件明細書の発明の詳細な説明は、当業者が本件発明の実施をすることができる程度に明確かつ十分に記載されたものであるといえる。

よって、申立人の追加的主張は採用できない。

第7 むすび
以上のとおりであるから、取消理由通知に記載した取消理由及び特許異議申立書に記載した特許異議申立理由によっては、本件請求項1?8に係る特許を取り消すことはできない。
また、他に本件請求項1?8に係る特許を取り消すべき理由を発見しない。
よって、結論のとおり決定する。


 
発明の名称 (54)【発明の名称】
粉末積層造形に用いるための造形用材料
【技術分野】
【0001】
本発明は、粉末積層造形に用いるための造形用材料に関する。
【背景技術】
【0002】
付加製造(Additive manufacturing)技術では、材料を付着することによって3次元形状の数値表現(典型的には3DCADデータ)をもとに物体を作製する。典型的には、造形用材料(Additive Manufacturing materials)を造形すべき造形物の断面に対応する形状の薄層として接合または焼結し、この薄層を順次積み重ねていくことで、目的の三次元形状を造形する。この付加製造においては、これまで、その扱いやすさから樹脂材料を使用した樹脂製品の造形が広く行われていた。しかしながら、近年では、金属やサーメットを含む粉末材料を用い、成形型を必要とせずに金属やサーメットからなる部材を直接造形する、粉末積層造形技術の向上が求められている(例えば、特許文献1および2参照)。
【先行技術文献】
【非特許文献】
【0003】
【非特許文献1】S.Kumar,J.MATER.PROCESS.TECHNOL 209(2009)3840-3848
【非特許文献2】近畿大学次世代基盤技術研究所報告 Vol.2(2011)95-100
【発明の概要】
【発明が解決しようとする課題】
【0004】
粉末積層造形用の粉末材料については、高品質な造形物を得るために、その性状を調整することが重要となることが知られている。例えば、積層造形に使われる粉末は、粒度がそろい、各粒子が真球状に近く、粒子の内部にポロシティ(気孔)の少ないことが要求されている。しかしながら、このような従来の粉末材料を用いて造形された造形物の相対密度は、粉末を構成する粒子間に必然的に空隙が生じることから、100%には満たないという問題があった。
【0005】
そのため、例えば、金属部材の粉末積層造形において、必ずしも全範囲で高い相対密度が要求されるわけではない場合には、例えば金属部材の内部のコア(核)は低密度の造形を行い、表面部分のシェル(殻)のみを高密度に造形することが行われている。この場合、例えば、低密度のコアは、熱源として高出力レーザを使用して1走査あたりの積層厚みを比較的大きく(例えば、90μm程度)として造形するのに対し、高密度のシェル部分はやや低出力なレーザを用い、1走査あたりの積層厚みを薄く(例えば、30μm以下に)して造形するなどの工夫が為されている。
したがって、中心部にまで高密度を要求される部材の製造に際しては、長大な時間をかけて積層厚の薄い造形を繰り返し行う必要があるとの課題があった。あるいは、他の手法として、造形後のポーラスな造形物にブロンズなどを溶浸させて相対密度を高めたり、粉末材料にレーザ吸収剤をコーティングしてレーザ吸収率を高めるなどの対策がとられたりもしている。
【0006】
セラミック成分を含むサーメットの粉末材料は、一般に、金属材料や樹脂材料と比較して融点および機械的強度が高い。したがって、上記の問題は、一般に金属よりも融点の高いセラミックを含む部材の造形においてより一層顕著となり得る。したがって、例えば、セラミックを含む粉末積層造形物の相対密度については、様々な造形条件や粉末材料の性状を厳格に調整した場合であっても、60%程度にしか達しないのが現状である。またその場合であっても、より長大な造形時間を要するとの課題は依然として存在し得た。
【0007】
本発明は、かかる点に鑑みてなされたものであり、その目的は、粉末積層造形に用いるための粉末状の造形用材料であって、セラミックを含みながらも高密度な造形物をより効率的に造形することが可能な新規な造形用材料を提供することにある。
【課題を解決するための手段】
【0008】
上記課題を解決するために、ここに開示される技術は、粉末積層造形に用いる造形用材料を提供する。この造形用材料は、セラミックを含む第1粉末と、金属を含む第2粉末と、を含む。この上記第1粉末と、上記第2粉末とは、焼結により結合されて造粒焼結粒子を構成している。そしてこの造粒焼結粒子の顆粒強度は、1MPaを超えて10000MPa未満であることを特徴としている。
【0009】
従来の粉末状の造形用材料の常識では、造形物中の気孔の形成を避けるために、造形用材料はポロシティ(気孔)の少ないものであることが重要な条件の一つであった。これに対し、ここに開示される材料は、上記のとおり造粒焼結粒子の形態で実現される。換言すると、第1粉末および第2粉末を1次粒子とし、この1次粒子が焼結された2次粒子の形態を有している。したがって造粒焼結粒子には、必然的に間隙(気孔)が形成され得る。換言すると、複数の一次粒子は間隙をもって三次元的に結合されている。このような形態を有することにより、セラミックを含む造形用材料であっても溶融され易くなり、緻密な造形物の造形が可能とされる。
【0010】
なお、このような造粒焼結粒子(すなわち二次粒子)において、一次粒子は二次粒子よりも相対的に小さく、軽量であり得る。すると、粉末積層造形に供した場合、例えばレーザの照射により造粒焼結粒子が崩壊することが考えられる。このとき崩壊された造粒焼結粒子が飛散すると、その飛散分が造形用材料の減量に繋がり、造形効率および造形速度が低下してしまう。また、通常の粉末造形におけるスライスデータに基づき造形を行うと、寸法精度が劣ってしまうというという問題が生じ得る。そこで、ここに開示される技術では、造粒焼結粒子における一次粒子同士を焼結させ、顆粒強度が1MPaを超えて10000MPa未満となるように調整している。これにより、上記造形における造粒焼結粒子の崩壊に起因する問題の発生を抑制するようにしている。顆粒強度は、10MPa以上5000MPa以下であることがより好ましい。これにより、例えば、レーザ強度を低減させたり、レーザ走査速度を低下させたりする必要なく、緻密な造形物の造形を可能とする造形用材料が提供される。さらには、レーザ走査速度をより速めても緻密な造形物の造形が可能な造形用材料が提供される。
【0011】
なお、金属を含む第2粒子は、より少ないエネルギーで溶融して、第1粉末の溶融を促し得る。さらに、第1粉末と第2粉末とが造粒されていることにより、造形物において第1粉末に由来する成分と、第2粉末に由来する成分とが分離することが抑制され得る。これにより、ここに開示される造形用材料は、均質な造形物を得ることができるという利点も有している。
【0012】
ここに開示される造形用材料の好ましい態様において、平均粒子径は、1μm以上100μm以下である。このことにより、汎用されている造形装置に適した大きさの造形用材料が提供される。
【0013】
ここに開示される造形用材料の好ましい態様において、上記第1粉末および上記第2粉末の平均粒子径は、0.1μm以上20μm以下である。このことにより、より溶融され易く緻密な造形物の造形が可能な造形用材料が提供される。例えば、レーザ強度を高めても崩壊し難く、かつ、気泡の少ない緻密な造形物の造形が可能な造形用材料が提供される。
【0014】
ここに開示される造形用材料の好ましい態様において、上記第1粉末と上記第2粉末との合計に占める、上記第2粉末の割合は、10質量%以上90質量%以下である。これにより、より広い組成および組織の造形物を積層造形することができるために好ましい。
【0015】
ここに開示される造形用材料の好ましい態様において、上記第1粉末は炭化物セラミックである。このことにより、第2粉末との親和性が良好となり、硬度が高く均質な造形物を造形することができる。
【0016】
以上の造形用材料は、構成成分としてセラミックを含みながらも、かかるセラミックは造形用材料中に一次粒子の形態で含まれ得る。またこの造形用粒子は崩壊することなく溶融して造形に供される。そのため、一般的な条件での粉末積層造形によって、1層あたりの造形厚みの低減を抑えて緻密な造形物を造形することが可能である。このような観点から、ここに開示される技術は、上記の造形用材料の三次元造形物をも提供する。
また、他の側面において、ここに開示される技術は、上記の造形用材料を用いて三次元造形を行うことを特徴とする三次元造形物の製造方法をも提供する。
【図面の簡単な説明】
【0017】
【図1】一実施形態にかかる造形用材料の走査型電子顕微鏡(SEM)像である。
【図2】他の実施形態にかかる造形用材料の走査型電子顕微鏡(SEM)像である。
【図3】粉末積層造形を実施するための装置を説明する断面簡略図である。
【図4】(a)比較例と(b)実施例に係る造形物の断面SEM像である。
【発明を実施するための形態】
【0018】
以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄は、本明細書に記載された発明の実施についての教示と当該分野における出願時の技術常識とに基づいて当業者に理解され、実施することができる。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。また、本明細書において、範囲を示す「X?Y」は「X以上Y以下」を意味し、「重量」と「質量」、「重量%」と「質量%」および「重量部」と「質量部」は同義語として扱う。
【0019】
(造形用材料)
ここに開示される「造形用材料」は、粉末積層造形に用いるための粉末状の材料である。粉末積層造形とは、付加製造技術において造形物の材料として粉末状の材料を用いる各種の造形手法を広く包含する。粉末積層造形における造形用材料を結合(付着)させるための手段は特に制限されない。具体的には、例えば、バインダジェット法に代表される結合剤噴射(Binder jetting)法、レーザ肉盛り溶接,電子ビーム肉盛り溶接,アーク溶接等に代表される指向性エネルギー堆積(Directed energy deposition)法、レーザ焼結法,レーザ選択焼結(Selective Laser Sintering:SLS)法,電子ビーム焼結法等に代表される粉末床溶融結合(Powder bed fusion)法等と呼ばれるものが含まれる。ここに開示される造形用材料は緻密な造形物の造形に好適であるとの観点から、指向性エネルギー堆積法、粉末床溶融結合法を採用することが特に好ましい。
【0020】
ここに開示される造形用材料は、セラミックを含む第1粉末と、金属を含む第2粉末と、を含んでいる。そして第1粉末と、第2粉末とは、焼結により結合されて造粒焼結粒子を構成している。図1は、造形用材料の一実施形態を示す走査型電子顕微鏡(Scanning Electron Microscope:SEM)像である。この例では、比較的丸みを帯びた大きめの粒子が金属粉末(第2粉末)であり、より小さめの粒子がセラミック粉末(第1粉末)である。ここに開示される造形用材料は、このように、あたかも第1粉末および第2粉末を一次粒子とし、造粒焼結粒子が2次粒子の体を為しているとも理解することができる。なお、金属粉末を構成する粒子と、セラミック粉末を構成する粒子とは、概ね均一に混合、分散された状態で二次粒子を構成している。このような造形用材料において、第1粉末や第2粉末が一次粒子の形態で含まれることが許容(例えば10質量%以下)されるのは言うまでもない。
【0021】
(第1粉末)
第1粉末は本質的にセラミックを含む。第1粉末は、典型的には、主成分としてセラミックを含む。ここでいう主成分とは、第1粉末の70質量%以上を占める成分を意味する。第1粉末は、好ましくは80質量%以上、より好ましくは90質量%以上、特に好ましくは95質量%以上(典型的には98質量%以上)がセラミックからなることが好ましい。第1粉末におけるセラミック以外の成分としては、樹脂やセラミック以外の無機材料、金属が挙げられる。セラミック以外の成分については特に制限されないが、例えば、後述する金属成分であり得る。これらはセラミックと一体化(複合化)されて第1粉末を構成するものである。
【0022】
セラミックとしては、例えば、各種金属の酸化物からなるセラミック(酸化物系セラミック)材料であってもよいし、炭化物、ホウ化物、窒化物、アパタイト等の非酸化物からなるセラミック材料であってよい。
ここで、酸化物系セラミックとしては、特に限定されることなく各種の金属の酸化物とすることができる。かかる酸化物系セラミックを構成する金属元素としては、例えば、B、Si、Ge、Sb、Bi等の半金属元素、Mg、Ca、Sr、Ba、Zn、Al、Ga、In、Sn、Pb等の典型元素、Sc、Y、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Fe、Co、Ni、Cu、Ag、Au等の遷移金属元素、La、Ce、Pr、Nd、Sm、Er、Lu等のランタノイド元素から選択される1種または2種以上が挙げられる。なかでも、Mg、Y、Ti、Zr、Cr、Mn、Fe、Zn、Al、Erから選択される1種または2種以上の元素であることが好ましい。
【0023】
酸化物系セラミックとして、より具体的には、例えば、アルミナ、ジルコニア、イットリア、クロミア、チタニア、コバルタイト、マグネシア、シリカ、カルシア、セリア、フェライト、スピネル、ジルコン、酸化ニッケル、酸化銀、酸化銅、酸化亜鉛、酸化ガリウム、酸化ストロンチウム、酸化スカンジウム、酸化サマリウム、酸化ビスマス、酸化ランタン、酸化ルテチウム、酸化ハフニウム、酸化バナジウム、酸化ニオブ、酸化タングステン、マンガン酸化物、酸化タンタル、酸化テルピウム、酸化ユーロピウム、酸化ネオジウム、酸化スズ、酸化アンチモン、アンチモン含有酸化スズ、酸化インジウム、スズ含有酸化インジウム、酸化ジルコニウムアルミネート、酸化ジルコニウムシリケート、酸化ハフニウムアルミネート、酸化ハフニウムシリケート、酸化チタンシリケート、酸化ランタンシリケート、酸化ランタンアルミネート、酸化イットリウムシリケート、酸化チタンシリケート、酸化タンタルシリケート等が挙げられる。
【0024】
また、非酸化物系セラミックとしては、例えば、炭化タングステン、炭化クロム、炭化バナジウム、炭化ニオブ、炭化モリブデン、炭化タンタル、炭化チタン、炭化ジルコニウム、炭化ハフニウム、炭化ケイ素、炭化ホウ素などの炭化物、ホウ化モリブデン、ホウ化クロム、ホウ化ハフニウム、ホウ化ジルコニウム、ホウ化タンタル、ホウ化チタンなどのホウ化物、窒化ホウ素、窒化チタン、窒化ケイ素、窒化アルミニウム等の窒化物、フオルステライト、ステアタイト、コーディエライト、ムライト、チタン酸バリウム、チタン酸鉛、チタン酸ジルコン酸鉛、Mn-Znフェライト、Ni-Znフェライト、サイアロン等の複合化物、ハイドロキシアパタイト、リン酸カルシウム等のリン酸化合物等が挙げられる。
【0025】
以上のセラミックは、任意の元素がドープ又は置換されていてもよい。また、これらのセラミックは、いずれか1種を単独で含まれていてもよいし、2種以上が組み合わされて含まれていてもよい。例えば、2種以上のセラミックが含まれる場合には、その一部または全部が複合化物を形成していても良い。このような複合化されたセラミックの例としては、例えば、具体的には、イットリア安定化ジルコニア、部分安定化ジルコニア、ガドリニウムドープセリア、ランタンドープチタン酸ジルコン酸鉛や、上記のサイアロン、上記複合酸化物等が挙げられる。かかる複合化物からなる第1粉末を用いることで、当該複合化物を含む造形物を造形することができる。
【0026】
(第2粉末)
第2粉末は本質的に金属を含む。第2粉末は、典型的には、主成分として金属を含む。ここでいう主成分とは、第2粉末の70質量%以上を占める成分を意味する。第2粉末は、好ましくは80質量%以上、より好ましくは90質量%以上、特に好ましくは95質量%以上(典型的には98質量%以上)が金属からなることが好ましい。第2粉末における金属以外の成分としては、樹脂や、セラミックおよびガラス等の無機材料が挙げられる。これらは金属と一体化(複合化)されて第2粉末を構成するものである。
【0027】
金属としては特に制限されず、例えば、上記のセラミックの構成元素として挙げた各種の金属元素の単体や、これらの元素と他の1種以上の元素とからなる合金等であってよい。金属の単体としては、例えば、典型的には、マグネシウム(Mg),アルミニウム(Al),チタン(Ti),クロム(Cr),マンガン(Mn),鉄(Fe),コバルト(Co),ニッケル(Ni),銅(Cu),亜鉛(Zn),ジルコニウム(Zr),金(Au),銀(Ag),白金(Pt),イリジウム(Ir),ビスマス(Bi),ニオブ(Ni),モリブデン(Mo),錫(Sn),タングステン(W)および鉛(Pb)等が例示される。
また、合金としては、一例として、Cu-Al合金,Cu-Al-Fe合金,Cu-Ni合金,Cu-Ni-In合金等に代表される銅合金、Ni-Al合金,Ni-Cr合金(例えば、Ni-20Cr合金、Ni-50Cr合金、インコネル),Ni-Cr-Fe合金(例えばインコロイ),Ni-Cr-Al合金,ハステロイ(Ni-Fe-Mo合金,Ni-Cr-Mo合金),Ni-Cu合金(例えば、モネル)等に代表されるニッケル合金、コバルトを主成分とし、Co-Cr-W合金(例えば、ステライト),Co-Cr-Ni-W-C合金,Co-Mo-Cr-Si合金,Co-Cr-Al-Y合金等に代表されるコバルト合金、Ni-Cr-Fe-Si-B-C合金,Ni-Cr-Mo-Cu-Fe-Si-B-C合金等に代表されるNi自溶合金、Co-Ni-Cr-Mo-Fe-Si-B-Cに代表されるCo自溶合金、マルエージング鋼に代表される低炭素鋼、炭素鋼、SUS304,SUS316,SUS410,SUS420J2,SUS431等に代表されるステンレス鋼、Ti-6Al-4Vに代表されるチタン合金等が挙げられる。なお、ここでいう合金とは、上記の金属元素と、他の1種以上の元素からなり、金属的な性質を示す物質を包含する意味であって、その混ざり方は、固溶体、金属間化合物およびそれらの混合のいずれであってもよい。
以上の金属および合金は、いずれか1種が単独で含まれていてもよいし、2種以上が組み合わされて含まれていてもよい。
【0028】
(造粒焼結粒子)
ここに開示される造形用材料は、上記のとおり二次粒子の形態を有する造粒焼結粒子の集合として構成されている。ここで造粒焼結粒子とは、一次粒子が焼結され、一体となって一つの粒のように振る舞う粒子状物(粒子の体をなしたもの)をいう。そしてここでいう「焼結」とは、一次粒子同士が直接的に結合した状態をいう。したがって、焼結は、固相焼結および液相焼結のいずれであってもよい。また、本明細書でいう焼結は、いわゆる融着,溶融結合を含み得る。
【0029】
このような造形用材料は、例えば、顆粒粒子(単に造粒粒子という場合もある。)、コア粒子の周りに微粒子が結合されてなる微粒子被覆粒子等の形態の二次粒子(粒子集合体)において、個々の一次粒子が焼結により強固に一体化されることにより実現される。なお、粉末積層造形におけるエネルギー源としては、レーザ、電子ビーム、アーク等が汎用されており、これらが造形用材料に照射されたときには高いエネルギーが解放されて造形用材料に衝撃が生じ得る。かかる衝撃により、単なる造粒粒子は崩壊したり、一次粒子が飛散したりする虞がある。かかる事態の発生を避けるため、造粒粒子は焼結により個々の一次粒子が結合された、いわゆる造粒焼結粒子として構成される。この造粒焼結粒子は、エネルギー源としてより強度の高いレーザ等を照射された場合であっても、造形用材料の崩壊および飛散等が生じ難いために好ましい。このことは、造形物の造形精度および品質を損なうことなく、造形速度の高速化に繋がり得る(例えば、レーザ走査速度を速め得る、あるいはレーザ走査速度を低減する必要がない)ために好ましい。
【0030】
(顆粒強度)
造形用材料を構成する造粒焼結粒子の顆粒強度は、1MPaを超えるように規定することができる。これにより、造形のためのエネルギーにより造粒焼結粒子が崩壊したり、飛散したりするのを好適に抑制することができる。その結果、造形エリアへの材料粉末の供給が安定するため、ムラの無い高品質な造形物を造形できるために好ましい。なお、おおよその目安として、例えば、バインダにより造粒一体化された造粒粒子は、顆粒強度が1MPaに満たないと考えることができる。造粒焼結粒子の顆粒強度は、10MPa以上であるのが好ましく、50MPa以上であるのがより好ましく、100MPa以上(例えば200MPa以上)であるのが特に好ましい。しかしながら、発明者らの検討によると、顆粒強度が強すぎると、造形用材料を十分に溶融させるのが困難となるために好ましくない。また、顆粒強度強すぎる造粒焼結粒子は、概ね造粒されていない単一粒子と類似した構成となるまで焼結が進行し、球状化した粒子とその性状が似たものとなってしまう。かかる観点から、顆粒強度は10000MPa未満とする。顆粒強度は5000MPa以下であるのが好ましく、2500MPa以下であるのがより好ましく、1000MPa以下(例えば800MPa以下)であるのが特に好ましい。
【0031】
本明細書において、造形用材料を構成する造粒焼結粒子の「顆粒強度」は、電磁力負荷方式の圧縮試験機を用いて測定される当該粒子の破壊強度を採用することができる。具体的には、加圧圧子と加圧板との間に一つの造粒焼結粒子を固定し、電磁力により加圧圧子と加圧板との間に一定の増加割合で圧縮の負荷力を与えていく。圧縮は定負荷速度圧縮方式で行い、その際の測定試料の変形量を測定していく。測定した試料の変形特性結果を専用のプログラムで処理することで、強度値(破壊強度)を計算することができる。本明細書においては、造形用材料を構成する任意の10個以上の造粒焼結粒子について、微小圧縮試験装置(株式会社島津製作所製、MCT-500)を用いて測定した破壊強度の算術平均値を、顆粒強度として採用している。なお、各造粒焼結粒子について、圧縮試験にて得られた臨界荷重をL[N]、平均粒子径をd[mm]としたとき、造粒焼結粒子の破壊強度σ[MPa]は、次式:σ=2.8×L/π/d^(2);で算出される。
【0032】
このような造形用材料は、第1粉末を構成する粒子(典型的には一次粒子である)および第2粉末を構成する粒子(典型的には一次粒子である)の間には間隙が存在する。そして個々の一次粒子間には間隙が形成され、一次粒子は互いに3次元的に結合される。これによって、造形用材料はエネルギー源(熱源)からエネルギーを受け取りやすく、溶解しやすいという利点がある。その結果、二次粒子間の間隙は容易に消失されて、例えば鋳型を使用して製造する焼結体(バルク体)に近い、緻密性の高い高硬度な造形物を得ることができる。
【0033】
特に、この造形用材料は、セラミックを含む第1粉末のみではなく、一般にセラミックよりも融点の低い金属を含む第2粉末を含んでいる。また造粒焼結粉を構成する個々の粒子の間には、必然的に間隙(気孔)が形成され得る。換言すると、複数の一次粒子は間隙をもって三次元的に結合されている。このことにより、造形用材料においては第2粉末の溶融が先行し、第2粉末の融液が第1粉末の表面に濡れ広がることができる。あるいは、第2粉末が溶融してなるマトリックス内に、第1粉末を分散状態で取り込むことができる。これにより、第1粉末の溶融を促進させられて、緻密な造形物を得ることができる。あるいは、金属相中にセラミック相が分散された形態の緻密な造形物を得ることができる。
【0034】
また、従来の粉末積層造形で使用されてきた粉末材料は、平均粒子径が小さく(例えば20μm以下)なると粉末を構成する粒子間の接触面積の影響が大きくなるため、流動中の抵抗が増大し、流動性が低下する傾向にあった。これに対し、ここに開示される造形用材料は、たとえ一次粒子の平均粒子径が小さくても、この一次粒子が二次粒子の形態で造形用材料を構成しているため、二次粒子の平均粒子径に対応した良好な流動性を備えることができる。
【0035】
なお、この造形用材料は、造粒焼結粒子を構成する一次粒子の間に十分な間隙が設けられ得る。このような「間隙」とは、例えば、一次粒子が最密充填された場合に必然的に形成される空間よりも、より広い空間を意味している。かかる「間隙」は、好ましくは、当該一次粒子が最密充填された場合に必然的に形成される空間の、1.1倍(1.2倍)以上の空間であり得る。この間隙については、例えば、比表面積・細孔分布測定装置等で確認することができる。
【0036】
このように一次粒子の平均粒子径を微細にすることで、例えば、かかる造形用材料を構成する二次粒子自体の融点よりも低い温度で軟化または溶融させることができる。このことは、これまでに予想されていない、全く新しい知見であり得る。したがって、かかる造形用材料は、例えば、粉末積層造形において従来のエネルギー(例えば、レーザにおいてはレーザ出力)よりも低い状態で軟化または溶融させることができ、プロセスのコストダウンが可能となる。また、二次粒子の軟化または溶融効率が上がるため、例えば、レーザ走査速度を低下させることなく、さらにはレーザ走査速度を速めて、気孔率の少ない緻密な三次元造形物の作製が可能となる。これにより、例えば、当該造形用材料のバルクに近い特性を有する三次元造形物の作製が可能となる。
【0037】
(造形用材料の平均粒子径)
造形用材料の平均粒子径は特に制限されず、例えば、使用する粉末積層造形装置の規格に適した大きさとすることができる。例えば、粉末積層造形における造形用材料の供給に適した大きさであり得る。造形用材料の平均粒子径の上限は、より大きいものとする場合には、例えば、100μm超過とすることができるが、典型的には100μm以下とすることができ、好ましくは75μm以下、より好ましくは50μm以下、さらに好ましくは40μm以下とすることができる。造形用材料は、平均粒子径が小さくなるにつれて、例えば造形エリアにおいて造形用材料の充填率が向上し得る。その結果、造形される三次元造形物の緻密度を好適に増すことができる。また、造形される三次元造形物の表面粗さ(Ra)を小さくできるとともに、寸法精度を向上させるという効果を得ることもできる。さらに、本発明における造形用材料は間隙を備えているため、積層造形において付着させた造形用材料を固化する際の固化効率が向上されるという利点もある。
【0038】
また、造形用材料の平均粒子径の下限は、造形用材料の流動性に影響を与えない範囲であれば特に制限されない。これに限定されるものではないが、より小さいものとする場合には、例えば、10μm以下、さらには5μm以下等とすることができる。しかしながら、ここに開示される造形用材料は、二次粒子の形態を有しているため必ずしも平均粒子径を小さくする必要はない。したがって、例えば、造形用材料を形成する際のハンドリングや造形用材料の流動性を考慮した場合には、平均粒子径の下限を1μm以上とすることができ、5μm以上が適切であり、10μm以上が好ましく、例えば、20μm以上がより好ましい。造形用材料の平均粒子径が大きくなるにつれて、造形用材料の流動性が向上する。その結果、造形装置への造形用材料の供給を良好に実施することができ、作製される三次元造形物の仕上がりが良好となるために好ましい。
【0039】
なお、通常、例えば平均粒子径が10μm未満程度の微細な粉末材料は、粒子形状の制御が困難となり、また、比表面積が増大されるため、流動性が低下し得る。そのため、このような粉末材料を粉末積層造形に用いると、粉末材料の供給の際の平坦化が困難となりがちである。そしてさらに、その質量の小ささから、かかる粉末材料の飛散等が発生し、ハンドリングが困難となり得る。これに対し、ここに開示される造形用材料では、平均粒子径の小さい複数の一次粒子を間隙をもって3次元的に焼結させた二次粒子で構成されている。これにより、一次粒子の形態は維持しつつも、粒子の重みづけを実現することができる。また、上記のとおり、組成の異なる第1粉末と第2粉末とを含んでいても、造形用材料における成分濃度を均一に保つことができる。これによって、より平均粒子径の小さい一次粒子を用いることによる利点と、より平均粒径の大きな二次粒子を用いることによる利点とを両方兼ね備えた、全く新しい粉末積層造形用の造形用材料が提供され得る。
【0040】
(一次粒子の平均粒子径)
一方で、ここに開示される造形用材料において、二次粒子を構成する第1粉末および第2粉末の平均粒子径は、例えば、20μm以下(20μm未満)であることが好ましく、10μm以下(10μm未満)であることがより好ましく、例えば10μm以下とすることができる。このように一次粒子の平均粒子径を微細にすることで、より一層緻密で微細な三次元造形物を作製することが可能となる。また、第1粉末および第2粉末の平均粒子径は、例えば、1nm以上とすることができ、200nm以上であることがより好ましく、例えば500nm以上とすることができる。このように一次粒子の平均粒子径を微細にすることで、より一層緻密で微細な三次元造形物を作製することが可能となる。
【0041】
なお、第1粉末と第2粉末とでは、一般に、第1粉末の方が融点が高くて溶け難い。したがって、より造形に適した造形用材料を構成するとの観点から、第1粉末の平均粒子径D_(1)を、第2粉末の平均粒子径D_(2)よりも小さくすることが好ましい態様であり得る。第1粉末の平均粒子径D_(1)と第2粉末の平均粒子径D_(2)とは、これに限定されるものではないが、例えば、D_(1)<D_(2)を満たすことが好ましく、D_(1)≦0.7×D_(2)がより好ましく、D_(1)≦0.5×D_(2)が特に好ましい。例えば、D_(1)≦0.3×D_(2)とすることができる。また、第1粉末の平均粒子径D_(1)と第2粉末の平均粒子径D_(2)とは、0.05×D_(2)≦D_(1)が好ましく、0.07×D_(2)≦D_(1)がより好ましく、0.1×D_(2)≦D_(1)が特に好ましい。
好ましい。
【0042】
なお、本明細書において、造形用材料の「平均粒子径」とは、特筆しない限り、レーザ回折・散乱法に基づく粒度分布測定装置により測定された体積基準の粒度分布における積算値50%での粒子径(50%体積平均粒子径;D_(50))を意味する。しかしながら、例えば、平均粒子径が1μmに満たない粒子群については、動的光散乱法や、電子顕微鏡観察に基づいて、その平均粒子径を測定することができる。この場合、本明細書においては、典型的には、電子顕微鏡等の観察手段により観察された100個以上の粒子の平面視像(例えば、二次電子像等)について求めた円相当径の算術平均値を平均粒子径として採用している。
【0043】
なお、造形用材料を構成する一次粒子(結合状態にある第1粉末および第2粉末)に関する「平均粒子径」は、例えば、比表面積から算出される球形粒子の直径(球相当径)として算出される値を採用することができる。かかる一次粒子の平均粒子径(Dave)は、造形用材料全体の比表面積をSm、密度をρとしたとき、次式:Dave=6/(ρSm);に基づき求めることができる。ここで、造形用材料の密度ρは、造形用材料を組成分析する等して第1粉末および第2粉末の組成とその割合を算出し、第1粉末および第2粉末を構成する各材料の密度を配合割合に応じて足し合わせた値(加重合計値)を採用することができる。
【0044】
なお、比表面積は、例えば、比表面積測定装置(マイクロメリティックス社製、FlowSorbII 2300)を用い、連続流動法により測定されたN_(2)等のガス吸着量から、BET法により算出した値とすることができる。この比表面積測定は、JIS Z 8830:2013(ISO9277:2010)に規定される「ガス吸着による粉体(固体)の比表面積測定方法」に準じて測定することができる。
【0045】
<比表面積>
なお、造形用材料の比表面積については、特に限定はされないものの、例えば、0.1m^(2)/gより大きいことが好ましい。すなわち、かかる造形用材料は、比表面積が(極めて)大きい二次粒子を主として構成されているほうが好ましい。具体的には、例えば、シリカ(SiO_(2))の比重が2.2g/mlであることから、半径がrmの真球のシリカ粒子の比表面積は1.36/r×10^(-6)m^(2)/gで表される。したがって、例えば、半径が30μmの真球のシリカ粒子の比表面積は0.045m^(2)/gで表される。また、αアルミナ(Al_(2)O_(3))の比重が3.98g/mlであることから、半径がrmの真球のアルミナの比表面積は0.75/r×10^(-6)m^(2)/gで表される。したがって、例えば、半径が30μmの真球のアルミナ粒子の比表面積は0.025m^(2)/gで表される。さらには、市販の溶融粉砕した微粉アルミナを、JIS Z 8830:2013(ISO9277:2010)「ガス吸着による粉体(固体)の比表面積測定方法」の規定に準じて測定すると、約0.1m^(2)/g程度となる。これに対し、ここに開示される造形用材料の比表面積は0.1m^(2)/g以上が好ましい。このような比表面積の増大に伴い、ここに開示される造形用材料は、表面形態が三次元的に入り組んだ複雑な形状(構造)を有することになる。すなわち、実質的な寸法(例えば、表面の凹凸部分の厚み等)は、造形用材料自体の平均粒子径に拘束されることなく、大幅に低減され得る。したがって、このような極めて大きな比表面積を有することにより、融点の高いセラミック材料であっても、比較的低温のレーザ等の熱源の熱を効率良く吸収して十分な軟化および溶融が実現され得る。延いては、セラミックを含む三次元造形物を効率良く作製することが可能な造形用材料が提供される。
【0046】
また、比較的低温の熱で積層が可能とされるため、粒成長が抑制され得る温度における積層造形が可能とされる。加えて、融点の低い元素を含む二次粒子であっても熱により造形用材料の組成が変化され難い。したがって、作製される三次元造形物の組成を簡便に制御することが可能となる。よって、かかる二次粒子の比表面積は、特に範囲は制限はされないものの、より広大であることが望ましく、0.1m^(2)/g以上であることが好ましい。
【0047】
<粒度範囲>
造形用材料の粒度範囲は、粉末積層造形に使用される装置の種類や条件に応じて適宜設定されることが好ましい。例えば、具体的には、造形用材料の粒度範囲は、5?20μm、45?150μm、5?75μm、32?75μm、15?45μm、20?63μm、あるいは25?75μmのように適宜調整することができる。
なお、造形用材料の粒度範囲は、その造形用材料を構成する粒子群に、どの様な大きさ(粒子径)の粒子が、どの様な割合(造形用材料の全体を100体積%としたときの相対粒子量)で含まれているかを示す。また「粒度範囲」とは、その造形用材料の粒子径の下限と上限までの幅(広がり)を示す指標である。本明細書における粒度範囲の下限の値は、造形用材料中に占めるその値以下の粒子径を有する粒子の割合が5%以下であることを意味している。また、粒度範囲の上限の値は、造形用材料中に占めるその値以上の粒子径を有する粒子の割合が5%以下であることを意味している。なお、造形用材料の粒度分布については、当該造形用材料の粒度に応じた適切な粒度分布測定装置により測定することができる。例えば、ロータップ試験機(JIS R6002参照)や、レーザ回折/散乱方式を採用する測定器を用いて求められる。また、例えば粒度範囲が5?75μmである造形用材料であれば、5μm以下の粒子径を有する粒子の割合が5%以下であり、かつ、75μm以上の粒子径を有する粒子の割合は5%以下であることを意味する。
【0048】
<真円度>
さらに、ここに開示される造形用材料を構成する造粒焼結粒子は、平均真円度が1.5未満(例えば、1以上1.5未満)であるのが好ましい。なお、かかる平均真円度は、造形用材料を構成する二次粒子の平均真球度を間接的に表し得る指標として採用されたものであり、当該二次粒子を任意の方向から平面視した場合の平均真円度を意味している。したがって、かかる平均真円度は、当該二次粒子が、必ずしも二次元的に真円に近い形態であることを意図するものではなく、本質的には、三次元的に真球に近い形態であることを意図するものである。
【0049】
特に、造形用材料はセラミックを含む第1粉末を含んでいる。一般に、球形化処理が施されていないセラミックは、結晶性が高いことから結晶系の外形がそのまま粒子の形態となって表れやすい傾向がある。とりわけ、粉砕物であるセラミック粒子は、結晶面に沿って破砕されているためにその傾向が強かった。また、理想的な結晶系の外形を示さない場合であっても、特定の結晶面が組み合わされてなる多面体に近い形態をその外形に表し得るものであった。したがって、結晶系に由来する稜や隅角(頂点であり得る)や角部を有するセラミックを含む二次粒子からなる第1粉末は、そのままで用いると流動性が低下しがちであった。つまり、造形エリアへの供給の際に、セラミックを含む二次粒子同士が互いにかみ合ったりして、平坦化が困難となり得る。
【0050】
これに対し、この造形用材料は、セラミックを含む第1粉末以外に、金属を含む第2粉末を含む。また、二次粒子の形態であるため、外形が真球に近くなり、例えば、当該粒子を構成するセラミックの結晶性を反映した結晶面や稜、隅角、角部等の影響が低減される。これにより、セラミックを含むにもかかわらず、造形用材料の流動性を著しく高めることができる。換言すると、ここに開示される造形用材料において、第1粉末は、セラミックの高い結晶性が反映された形態であってよく、例えば、角柱状、塊状等の外形であっても、上記の平均真円度を満たすことで、高い流動性を確保することが可能とされる。なお、かかる平均真円度は、例えば、平均アスペクト比等の指標では表し得ないレベルの平均真球度を反映し得る指標であり得る。これにより、粉末積層造形の平坦化工程において、その流動性が高められるかかる造形用材料の平均真円度は、可能な限り1に近いことが好ましく、1以上の値であり得る。また、平均真円度は、2.7以下であるのが好ましく、2.0以下がより好ましく、1.5以下、例えば、1.2以下であり得る。
【0051】
本明細書における、造形用材料を構成する造粒焼結粒子の「真円度」とは、電子顕微鏡等の観察手段により観察された100以上の二次粒子の平面視像(例えば、二次電子像等)について求められた真円度の算術平均値を意味する。また、真円度は、二次粒子の平面視像において、当該二次粒子の輪郭の長さである周囲長と、かかる輪郭で囲まれた面積とから、下記式により規定される値である。なお、かかる真円度は、二次粒子の表面形態の滑らかさをより反映しやすい指標であり、幾何学的円(真円)は真円度=1となり、真円から離れるにつれて真円度は1より大きな値となる。かかる平均真円度は、例えば、適切な倍率で取得した電子顕微鏡像を画像処理ソフト等を用いて解析することで求めることができる。
真円度=(周囲長^(2))÷(4×π×面積)
【0052】
<アスペクト比>
なお、造形用材料を構成する造粒焼結粒子の外形については、平面視における平均アスペクト比が1.4未満であるとより好ましい。というのは、上記のとおり、平均真円度がより1に近い二次粒子において、真円度は、二次粒子の全体的な形態よりも表面形態をより反映するものであり得る。換言すると、上述の真円度は、真円に近い二次粒子を評価する場合については、二次粒子の平面視における輪郭線がミクロなレベルで複雑になればなるほど、その値は二次粒子の全体の外形の変化の度合いを超えて大きくなりやすい傾向にある。したがって、真円度に加えて、さらにアスペクト比により二次粒子の外形について規定することで、全体としての外形がより真球に近い、すなわち平面視においては真円に近い、二次粒子とすることができる。
かかる平均アスペクト比は、造形用材料の流動性を考慮すると、1.5以下であるのが好ましく、1.3以下であるのがより好ましい。さらには、例えば、1.15以下とすることができ、1あるいは1により近いことが望ましい。
【0053】
本明細書において「アスペクト比」とは、電子顕微鏡等の観察手段により観察された100以上の二次粒子の平面視像(二次電子像等)について求められたアスペクト比の算術平均値を意味する。かかるアスペクト比は、当該二次粒子の相当楕円における長軸の長さをa、短軸の長さをbとしたとき、a/bで定義される。また、相当楕円とは、当該二次粒子と同面積で、かつ一次および二次モーメントが等しい楕円をいう。かかる平均アスペクト比は、例えば、適切な倍率で取得した電子顕微鏡像を画像処理ソフト等を用いて解析することで求めることができる。
【0054】
<フラクタル次元>
また、造形用材料を構成する造粒焼結粒子については、平均フラクタル次元が1.5未満であることも好ましい態様の一つである。かかる二次粒子は、表面形態がミクロなレベルで複雑なものであり得る。したがって、かかる粒子表面の複雑な形態を更に多様な指標で規定することで、外形がより真球に近い造形用材料とすることができる。フラクタル次元は、個々の粒子表面の複雑な形態を測るために広く一般に利用される指標であり、平均フラクタル次元はここに開示される造形用材料の表面の滑らかさを指し図るには好適な指標であり得る。平均フラクタル次元を1.5未満に規定することで、さらに流動性の向上された造形用材料を実現し得る。かかる平均フラクタル次元は、造形用材料の流動性を考慮すると、1.1以下であるのが好ましく、1.05以下であるのがより好ましい。
【0055】
本明細書において、「フラクタル次元」とは、電子顕微鏡等の観察手段により観察された100以上の二次粒子の平面視像(二次電子像等)について求められたフラクタル次元の算術平均値を意味する。また、本明細書において、フラクタル次元は、ディバイダーズメソッドにより求められる値を採用しており、二次粒子の平面視像における当該二次粒子の周囲長とストライド長の対数を関連づける関数の、線形部分の傾きとして定義される。かかるフラクタル次元の測定値は、1(=実線)以上2(=平面)未満の値となり、1に近い程二次粒子の表面が滑らかなことを意味する。かかる平均フラクタル次元は、例えば、適切な倍率で取得した電子顕微鏡像を画像処理ソフト等を用いて解析することで求めることができる。
【0056】
<安息角>
加えて、ここに開示される造形用材料については、安息角が39度未満であることも好ましい態様の一つである。安息角は、従来より粉体の流動性を示すために広く採用されてきた指標の一つであり得る。そして、例えば、造形用材料が供給装置内および造形装置内を搬送される際の、自発的な流動性を実際的に反映し得る指標であり得る。したがって、かかる安息角を小さく規定することで、流動性が高い造形用材料を実現することができる。延いては、均質な三次元造形物をより生産性良く作製することができる造形用材料であり得る。
かかる安息角は、造形用材料の流動性を考慮すると、36度以下であるのが好ましく、32度以下であるのがより好ましい。さらには、例えば、30度以下とすることもできる。安息角の下限に特に制限はないが、安息角が小さすぎると造形用材料が飛散し易くなったり、造形用材料の供給量の制御が困難になったりする場合がある。したがって、おおよその目安として、安息角は20度以上とすることが例示される。
【0057】
<フローファンクション>
なお、特に制限されるものではないが、ここに開示される造形用材料は、フローファンクションが5.5以上であることが好ましい。
上記の安息角は、無荷重状態での造形用材料の流動性を評価し得る指標であった。一方で、このフローファンクションは、造形用材料を圧密した状態でせん断応力を測定することによりその流動特性を評価するものであって、造形用材料のハンドリング性をより実際的に表現し得る指標となり得る。したがって、かかる構成によっても、例えば、平均粒子径が30μm未満の造形用材料について流動性が高いと判断することができ、三次元造形物をより一層生産性良く作製し得る造形用材料を提供することができる。
【0058】
(造形用材料の製造方法)
本実施形態における造形用材料は、一次粒子が間隙をもって三次元的に焼結されている限り、その製造方法は特に制限されない。例えば、好適な例として、以下に、造粒焼結法により造形用材料を製造する場合について説明する。しかしながら、ここに開示される造形用材料の製造方法は、これに限定されるものではない。
【0059】
(造粒焼結法)
造粒焼結法は、原料粒子(第1粉末および第2粉末であり得る)を二次粒子の形態に造粒したのち焼成することで、個々の粒子を焼結する手法である。造粒に際しては、公知の各種の造粒法を適宜利用することができる。例えば、造粒法として、乾式造粒あるいは湿式造粒等の造粒方法を利用することができる。具体的には、例えば、転動造粒法、流動層造粒法、撹枠造粒法、破砕造粒法、溶融造粒法、噴霧造粒法、マイクロエマルション造粒法等が挙げられる。なかでも好適な造粒方法として、噴霧造粒法が挙げられる。
【0060】
噴霧造粒法によると、例えば、以下の手順で造形用材料を製造することができる。すなわち、まず、所望の組成および寸法を有する第1粉末および第2粉末を用意する。必要に応じてその表面を保護剤等により安定化させる。そしてかかる安定化された原料粒子としての粉末を、例えばバインダと、必要に応じて含まれる有機材料等からなるスペーサー粒子等とともに適切な溶媒に分散させて噴霧液を用意する。原料粒子の溶媒への分散には、例えば、ホモジナイザー、翼式撹拌機等の混合機、分散機等を用いて実施することができる。これにより、第1粉末と第2粉末とは噴霧液中で均一に分散される。そしてこの噴霧液を、超音波噴霧機等を利用して噴霧し、液滴を形成する。かかる液滴を、例えば、気流に載せて連続炉を通過させることで溶媒成分を除去して乾燥させる。これにより、第1粉末および第2粉末がバインダにより間隙を以て3次元的に結合された状態の二次粒子を得ることができる。
【0061】
次いで、造粒された二次粒子を焼成することで、かかる二次粒子中に含まれる第1粉末および第2粉末を焼結させる。これにより、原料粒子同士を強固に結合(焼結)させることができる。この造粒焼結法では、例えば、上記の造粒法において超音波噴霧した液滴を乾燥させた後、引きつづき気流に載せて連続炉を通過させながら焼結させるとよい。具体的には、例えば、超音波噴霧した液滴を、連続炉内を搬送させながら、炉内の比較的上流に設けられる低温ゾーンで乾燥させて溶媒成分を除去し、次いで、炉内の比較的下流に設けられる高温ゾーンで焼成する。このとき、造粒された原料粒子は互いの接点で焼結されて、造粒形状を概ね維持して焼結される。焼結に際してバインダは消失する。スペーサー粒子を用いる系では、焼成によりこのスペーサー粒子も消失する。これにより、一次粒子が間隙をもって焼結された二次粒子の形態の粒子からなる造形用材料を得ることができる。造粒粒子は液滴から焼成まで気流によって運ばれる。したがって、概ね球形に近い造粒焼結粒子を得ることができる。
【0062】
なお、上記の製造工程において、原料粒子とともにスペーサー粒子を使用して造粒粒子を作製することもできる。噴霧された液滴が乾燥された状態では、原料粒子とバインダとが均一な混合状態になり、原料粒子はバインダにより結着されて混合粒子を構成している。したがって、原料粒子とともにスペーサー粒子を使用する系では、原料粒子とスペーサー粒子とが均一な混合状態でバインダにより結着されて混合粒子を構成している。そして、この混合粒子が焼成されることで、バインダ(およびスペーサー粒子)が消失する(燃えぬける)とともに、原料粒子が焼結される。このことにより、一次粒子が十分な間隙をもって結合された形態の二次粒子が形成される。
【0063】
なお、焼結に際し、原料粒子(典型的には第2粉末)はその組成や大きさによっては一部が液相となって他の粒子との結合に寄与し得る。そのため、出発材料の原料粒子よりも一次粒子の平均粒子径は大きくなったり小さくなったりする場合がある。例えば、図2は、焼結が比較的進行した造形用材料を例示するSEM像である。この図の造粒焼結粒子は、金属粉末の割合が多く、比較的焼結が進んでいる。そのため、金属粉末が大きく溶融した部分では、一次粒子が比較的密に焼結している。しかしながら、造粒焼結粒子であるため、造粒時に形成された空隙は明瞭に存在し得る。このように、造形用材料における一次粒子である第1粉末および第2粉末は、原料粒子とほぼ同等の寸法および形状を有していてもよいし、原料粒子が焼成により一次粒子が成長したり,結合したり,分割したりしていてもよい。また、乾燥から焼結までの間に、原料粒子以外の成分の消失および焼成による原料粒子の焼き締まりなどから、液滴のサイズよりも得られる二次粒子の平均粒子径のほうが大幅に小さくなり得る。これら、二次粒子および一次粒子の平均粒子径や、一次粒子間に形成される間隙の大きさおよび割合は、所望の二次粒子の形態に応じて適宜設計することができる。しかしながら、一次粒子間に間隙が全く存在しない造粒粒子は、もはやここに開示される発明でいう造粒焼結粒子の効果を発現し難いと考えることができる。したがって、ここに開示される発明においては、造粒焼結粒子は、焼結が進んだ場合であっても、少なくとも外部に連通する間隙または気孔(開気孔)を有していることが好ましいといえる。
【0064】
また、上記の製造工程において、特に限定されるものではないが、調製される噴霧液の原料粒子の濃度は、10?40質量%であることが好ましい。添加されるバインダとしては、例えばカルボキシメチルセルロース、ポリビニルピロリドン、ポリビニルピロリドン等が挙げられる。添加するバインダは、原料粒子の質量に対して0.05?10質量%の割合で調整されることが好ましい。焼成される環境は、特に制限はされないが、大気中、真空中もしくは不活性ガス雰囲気中であってもよく、600℃以上1700℃以下の温度で焼結させることが好ましい。一般に、顆粒強度は、焼成温度を調整することで制御することができる。また、例えば、焼結時間を調整することでも制御することができる。典型的には、使用する材料に対して焼成温度が高い程、および/または、焼成時間が長い程、焼結が進行して顆粒強度の高い造形用材料を得ることができる。焼成の温度は、一次粒子の粒径にもよるが、概ね、例えば、第2粉末における金属の(融点×0.8?0.95)程度の温度を目安に好適に設定することができる。特に、有機材料等からなるスペーサー粒子、バインダ等を用いる場合は、造粒粒子中の有機材料を除去する目的で酸素が存在する雰囲気下で焼結されてもよい。必要に応じて、製造された二次粒子を、解砕および分級してもよい。
【0065】
(三次元造形物の製造方法)
以上のようにして得られた造形用材料は、各種の粉末積層造形に適用することができる。そこで、ここに開示される三次元造形物の製造方法の好適例として、レーザ選択焼結法(SLS)を主として採用した場合を例に、粉末積層造形について説明する。
ここに開示される三次元造形物の製造方法は、一般的に、以下の工程を含む。
(1)粉末積層造形装置の造形エリアに造形用材料を供給する
(2)当該供給された造形用材料を、造形エリアに均一に薄く堆積させる。これにより、造形用材料の薄層を形成する。
(3)形成された造形用材料の薄層に、造形用材料を結合(付着)させるためのエネルギーを与えて、造形用材料を結合する工程
(4)固化した造形用材料の上に、新たな造形用材料を供給し(上記工程(1))、以後、工程(2)?(4)を繰り返すことで積層し、目的の三次元造形物を得る。
【0066】
図3は粉末積層造形のための積層造形装置の簡略図の一例を示しており、大まかな構成として、粉末積層造形が行われる空間である造形エリア10と、造形用材料を貯留しておくストック12と、造形エリア10への造形用材料の供給を補助するワイパ11と、造形用材料を固化するための固化手段(レーザ発振器等のエネルギー供給手段)13と、を備えている。造形エリア10は、典型的には、外周が囲まれた造形空間内を造形面より下方に有し、この造形空間内に昇降可能な昇降テーブル14を備えている。この昇降テーブル14は、所定厚みΔt1ずつ下方に移動することができ、この昇降テーブル14上に目的の造形物を造形してゆく。ストック12は、造形エリア10の傍に配置され、例えば、外周が囲まれた貯留空間内に、シリンダー等によって昇降可能な底板(昇降テーブル)を備えている。底板が上昇することで、所定量の造形用材料を造形面に供給(押し出し)することができる。
【0067】
1.造形用材料の供給
このような積層造形装置では、昇降テーブル14を造形面より所定厚みΔt1だけ下げた状態で造形エリア10へ造形用材料20を供給することで、所定厚みΔt1の造形用材料20の層を用意することができる。
【0068】
2.造形用材料の薄層を形成
このとき、造形面にワイパ11を走査させることで、ストック12から押し出された造形用材料を造形エリア10上に供給するとともに、造形用材料の上面を平坦化して、均質な造形用材料20の層を形成することができる。
【0069】
3.造形用材料の結合
そして、例えば、形成された第1層目の造形用材料層20に対し、第1層目のスライスデータに対応した固化領域にのみ、固化手段13を介してエネルギーを与えることで、造形用材料を所望の断面形状に溶融または焼結させ、第1層目の粉末固化層21を形成することができる。
【0070】
4.繰り返し積層造形
この後、昇降テーブル14を所定厚みΔt1だけ下げて再度造形用材料を供給し、ワイパ11でならすことで第2層目の造形用材料層20を形成する。そしてこの造形用材料層層20の第2層目のスライスデータに対応した固化領域にのみ、固化手段13を介して熱源や固化組成物等を与えて造形用材料を固化させて第2層目の粉末固化層21を形成する。このとき、第2層目の粉末固化層21と、下層である第1層目の粉末固化層21とが一体化されて、第2層目までの積層体を形成する。
【0071】
引き続き、昇降テーブル14を所定厚みΔt1だけ下降させて新たな造形用材料層20を形成し、固化手段13を介して熱源や固化組成物等を与えて所要箇所を粉末固化層21とする、との工程を繰り返すことで、目的とする三次元造形物を製造することができる。
【0072】
なお、造形用材料を固化するための手段としては、例えば、インクジェットにより造形用材料を固化するための組成物を噴射する方法や、レーザにより熱を与えて造形用材料を溶融固化(焼結を含む)する方法、または造形用材料が光硬化の性質をもつものであれば、その光硬化の特性に合わせて紫外線の照射等が選択される。より好ましくは、造形用材料を溶融固化する方法であり、例えば、具体的には、造形用材料を固化するための手段がレーザの場合は、例えば炭酸ガスレーザやYAGレーザを公的に用いることができる。なお、造形用材料を固化するための手段がインクジェットによる組成物の噴射である場合は、接着剤としてポリビニルピロリドン、ポリビニルアルコール、ポリビニルブチラール、ポリアクリル酸、ポリアクリル酸誘導体、ポリアミド等を含む組成物や、例えば重合開始剤等を含む組成物を使用することができる。さらに、造形用材料として光硬化の性質を持つものを使用する場合は、紫外線の波長領域を持つエキシマレーザ(308nm)、He-Cdレーザ(325nm)、Arレーザ(351?346nm)、可視光硬化樹脂を使用する場合はArレーザ(488nm)等を使用することができる。つまりは、使用する造形用材料の特性に応じて、適切な造形用材料を固化するための手段を選択することがよい。
【0073】
SLS法とは、3D CAD等から作成したスライスデータに基づき、造形用材料を堆積させた粉末層にレーザ光を走査させ、粉末層を所望形状に溶融・凝固する操作を、1断面(1スライスデータ)ごとに繰り返して積層させることで三次元的な構造体を造形する技術である。また、EBM法とは、同様に3D CAD等から作成したスライスデータを基に、電子ビーム用いて上記粉末層を選択的に溶融・凝固させ、積層することで3次元的な構造体を造形する技術である。いずれの技術においても、構造体の原料である造形用材料を所定の造形位置に供給するという工程を含む。特に、SLS法やEBM法においては、構造体を造形する造形エリア全体に、造形用材料を1断面厚さに対応する厚みで、均一に薄く堆積する平坦化工程を繰り返す必要がある。この造形用材料の平坦化工程において、造形用材料の流動性は重要なパラメータであり、作製する三次元造形物の仕上がりに大きく影響する。それに対して、本発明における粉末積層造形に用いる造形用材料は、流動性が良好であることから、仕上がりの良好な三次元造形物を作製できる。また、レーザ光の照射により、気孔の少ない緻密な三次元造形物を造形することができる。このとき、特にレーザ照射速度を低下する必要がない。これにより、セラミックを含む造形物を、従来よりも緻密かつ迅速に造形することが可能となる。
【0074】
レーザメタルデポジション法とは、具体的には、構造物の所望の部位に造形用材料を提供して、そこにレーザ光を照射することで造形用材料を溶融・凝固させ、当該部位に肉盛りを行う技術である。この手法を利用することで、例えば、構造物に摩耗等の物理的な劣化が発生した場合に、当該劣化部位に造形用材料として当該構造物を構成する材料または補強材料等を供給し、その造形用材料を溶融・凝固させることで劣化部位等に肉盛りを行うことができる。また、この肉盛りをセラミックを含む造形用材料を使用して緻密かつ高硬度で行うことができる。
【0075】
前記実施形態は次のように変更してもよい。
・ 造形用材料中およびそれを構成する二次粒子、さらには二次粒子を構成する一次粒子は、不可避不純物あるいは添加剤などの主となる成分以外の成分を含有してもよい。つまり、純度は特に制限されない。しかしながら、例えば、より機能性の高い三次元造形物を形成する用途の場合には、意図しない物質(元素)の混入は避けることが好ましく、造形用材料の純度は高い方が好ましい。かかる観点においては、二次粒子およびそれを構成する一次粒子の純度は高い方が好ましい。例えば、純度が95質量%以上であることが好ましく、さらには99質量%以上、より好ましくは99.9質量%以上、例えば99.99質量%以上とすることができる。
・ これらの造形用材料は、例えば、形成される三次元造形物の色調を調整する目的で他の元素(例えば、セラミックであれば、移金属元素や、Na、K、Rb等の元素)が導入されたり、機能性を高める目的で他の元素が導入されるなどしてもよい。また、上記の造形用材料を構成する元素は、一部がイオンまたは錯体等の形態で含まれていても良い。
【0076】
・ 造形用材料は、一次粒子が三次元的に結合されてなる二次粒子の形態を有している造粒粒子(典型的には間隙(気孔)を備えている。)から構成されている粉末であるが、前記二次粒子以外の形態を有する粒子を含有してもよい。ただし、前記二次粒子以外の粒子の含有量はできるだけ少ないことが好ましい。その理由としては、まず、本発明は、一次粒子が間隙をもって三次元的に結合されてなる二次粒子から構成されている造形用材料を粉末積層造形に用いることで、従来よりも緻密な造形物を造形できることを見出したものである。よって、造形用材料の全体量に対して、特定の形態を示す二次粒子の比率が多いほど、本発明の効果は大きくなる。換言すれば、造形用材料の全体量に対して、特定の形態を示す二次粒子の比率が少なくなると、本発明の効果が得にくくなる。
【0077】
また、本発明の特定の形態を示す二次粒子は、次のような考え方に基づき、さらに良い効果を発揮する。例えば、金属粒子、セラミック粒子等の複数種類の単一粒子を混合して造形用材料とすると、比重が異なるため、比重の大きな材料からなる粒子は下へ、逆に比重の小さな粒子は上へ行く傾向にあり、造形用材料中で成分の偏りが生じる。一方で、本発明のように特定の形態を示す二次粒子とすれば、例えば、金属粒子とセラミック粒子が混在するサーメット粒子を二次粒子とする場合や、複数の材料粒子を混合して二次粒子を形成する場合においても、二次粒子としての比重は均一であるため、造形用材料中で成分の偏りが生じることは少なく、製造される三次元造形物の仕上がりが向上する。このことからも、造形用材料の全体量に対して、特定の形態を示す二次粒子の比率が多い方が好ましい。よって、二次粒子の造形用材料に対する含有量の下限は、好ましくは90重量%であり、より好ましくは95重量%である。また、上限は通常98重量%であり、添加剤などの二次粒子以外の成分の混合により本発明の効果を損なわない程度に適宜調整されてもよい。
【0078】
<実施例>
以下、本発明に関する実施例を説明するが、本発明を以下の実施例に示すものに限定することを意図したものではない。
【0079】
セラミック粉末(第1粉末)として、平均粒子径が3.0μmのタングステンカーバイド(WC)と、平均粒子径が4.5μmのクロムカーバイド(CrC)の粉末を用意した。金属粉末(第2粉末)として、平均粒子径が2μmのコバルト(Co)と、平均粒子径が9μmのニッケルクロム合金(Ni-20%Cr)の粉末を用意した。
【0080】
用意したセラミック粉末と金属粉末とを、表1に示す割合で配合し、混合、造粒したのち焼結することで、造粒焼結粉を作製した。具体的には、まず、セラミック粉末と金属粉末とを所定の配合で混合し、この混合粉末100質量%に対して3質量%のバインダー(PVA:ポリビニルアルコール)と共に溶媒(水およびアルコールの混合溶液等)に分散させることで、スラリーを調製した。次いで、このスラリーを、噴霧造粒機および乾燥焼結炉等を用い、液滴状に造粒したのち乾燥させ、焼結させることで、造粒焼結粒子(二次粒子)を製造した。なお、液滴の乾燥温度は200℃とし、焼結温度は、用いた金属粉末における金属の融点(Tm)の9割程度の温度(0.9×Tm℃)とした。なお、セラミック粉末と金属粉末との配合が同じ例においては、最も番号の小さい例における焼結温度を0.9×Tm℃とし、例の番号が増えるごとに焼結温度を10℃低くした。この造粒焼結粒子を必要に応じて分級することで、造形用の造形用材料(例1?23)とした。
【0081】
なお、得られた造形用材料の平均粒子径、顆粒強度および嵩密度を測定し、その結果を表1に示した。
[平均粒子径]
造形用材料の平均粒子径は、原料粉末の平均粒子径と同様、レーザ回折/散乱式粒度測定器(株式会社堀場製作所製、LA-300)を用いて測定したD_(50)粒径を採用した。造形用材料は、必要に応じて分級(ふるい分け)することで、平均粒子径が30μmとなるように粒度を調整した。造粒焼結粒子の平均粒子径の測定結果を、表1の「D_(50)」の欄に示した。
【0082】
[顆粒強度]
造形用材料の顆粒強度は、各造形用材料から任意の10個の造粒焼結粒子を選定し、これらの造粒焼結粒子の破壊強度を微小圧縮試験装置(株式会社島津製作所製、MCT-500)を用いて測定し、その算術平均を算出することで求めた。具体的には、各造粒焼結粒子について、圧縮強度試験にて得られた臨界荷重をL[N]、平均粒子径をd[mm]としたとき、造粒焼結粒子の顆粒強度σ[MPa]は、次式:σ=2.8×L/π/d^(2);で算出される値を採用した。臨界荷重は、造粒焼結粒子に対して一定速度で増加する圧縮荷重を圧子で加えたときに、造粒焼結粒子が崩壊したとき(圧子の変位量が急激に増加した時)に造粒焼結粒子に加えられていた圧縮荷重の大きさである。造粒焼結粒子の顆粒強度の測定結果を、表1の「顆粒強度」の欄に示した。
【0083】
[嵩密度]
嵩密度は、JIS Z2504:2012に規定される金属粉-見掛密度測定方法に準じて測定される値を採用している。具体的には、直径2.5mmのオリフィスから自然に流れ出す粉末により、所定の容量の容器を自然充填の状態で満たしたときの、当該粉末の質量を測定することで、嵩密度を算出する。本明細書においては、嵩密度の測定に、金属粉用のJISカサ比重測定器(筒井理化学器械株式会社製)を用いて測定した値を採用した。
【0084】
[選択的レーザ溶融法(セレクトレーザメルティング法;SLM)]
上記で用意した造形用材料を、粉末積層造形である選択的レーザ溶融法により積層造形することで三次元造形物を得た。積層造形には、レーザ焼結型粉末積層造形システム(SLM solution社製、SLM125HL)を用いた。本例では、造形物の観察が容易となるように、粉末積層造形システムの造形エリア(造形テーブル)に基板を設置し、この基板上に造形物を造形するようにした。基板としては、アルミナ板を用いた。具体的には、上記の造形材料を1層あたり50μmの厚みで造形エリアのアルミナ板上に供給し、装置に付随のワイパで造形材料を平坦化して造形材料の堆積層(薄層)を形成した。その造形材料からなる薄層に対してファイバーレーザを2次元的に照射し、まずは層状の造形物(1層目)を形成した。そして、造形用材料の供給と平坦化の工程、それに対してレーザ照射する工程を複数回繰り返すことで、三次元造形物(設計:20層(1mm))を得た。なお、加工時の条件として、レーザ焦点は約150φμm、レーザ出力は100W、レーザ走査速度は300mm/sec、温度環境は常温、造形用材料周囲の雰囲気はArガスとした。
【0085】
[気孔率]
作製した三次元造形物の仕上がりを評価する指標として、三次元造形物の気孔率を測定した。気孔率は、それぞれの三次元造形物を造形方向(厚み方向)で切断した研磨断面に対して、画像解析法により測定された値を求めた。具体的には、三次元造形物の断面の画像を取得し、画像解析ソフトを用いて三次元造形物の断面を気孔部と固相部(造形された造形物部分)とに分離する2値化を行い、全断面積に占める気孔部の面積の割合を気孔率として算出した。
【0086】
なお、気孔率の測定には、走査型電子顕微鏡(Scanning Electron Microscope:SEM;株式会社日立ハイテクノロジーズ製、S-3000N)による観察像(好適には、二次電子像、組成像あるいはX線像のいずれかであり得る。)を用いた。参考のため、例1および例6の造形物についてのSEM像を図4(a)および(b)に順に示した。また、画像解析ソフトとしては、Image-Pro(Media Cybernetics社製)を使用した。三次元造形物の気孔率の測定結果を、表1の「気孔率」の欄に示した。気孔率は、10%以下の場合は「○」、10%より大きく20%以下の場合は「△」、20%より大きい場合は「×」とした。本実施形態では、「△」となった例はなかった。
【0087】
[均一性]
また、上記の気孔率の測定の際に行ったSEM観察により、造形物の組織の均一性を調べた。具体的には、セラミックと金属とを含む造形物の断面のSEM観察において、気泡の発生の様子や、微細組織におけるセラミック相と金属相との大きさや分散の程度を確認した。その結果、気泡の分布に偏りが少なく、セラミック相と金属相との大きさや分散の程度が概ね均一であると判断できる場合を「○」、気泡の分布に明らかな偏りが見られたり、セラミック相と金属相との大きさや分散の程度が均一とはいえないと判断した場合を「×」として、表1に示した。
【0088】
[硬度]
それぞれの造形物に対して、JIS Z2244:2009およびJIS R1610:2003に規定されるビッカース硬さ試験方法に基づき測定した。具体的には、硬微小硬度測定器(株式会社島津製作所製、HMV-1)を用い、三次元造形物の表面に対面角136°のダイヤモンド圧子を試験力1.96Nで押圧したときに得られる圧痕から、ビッカース硬さ(Hv0.2)を算出した。また、上記三次元造形物を作製した造形用材料と同じ造形用材料のバルク体の表面について同様にビッカース硬さ(Hv0.2)を算出した。その結果を、表1の「硬度」の欄に示した。
【0089】
[1層あたりの造形厚み]
造形精度や造形速度を評価する指標として、レーザ1走査あたり(すなわち1層あたり)の造形厚みを求めた。1層あたりの造形厚みは、得られた造形物の全厚みを測定し、これを積層数(厚み方向でのレーザ走査回数)で除することで算出される値を採用した。造形物の全厚みは、上記の気孔率の測定の際に行ったSEM観察により、造形方向(厚み方向)で切断した研磨断面における造形物の厚みを測定することで得た。造形物の全厚みは、各造形物に対して、3視野以上のSEM観察像について、各視野ごとに3点以上で測定し、その平均値を採用した。その結果を、表1の「1層厚み」の欄に示した。
【0090】
【表1】

【0091】
[評価]
例1?12に示されるように、セラミック粉末(ここではWC)に対して金属粉末(Co)を混合し、造粒粉末とすることで、3次元造形が可能であることがわかった。ここで、得られた造形物の気孔率はいずれも20%以下であり、通常のオペレーションで従来のセラミックまたはサーメットからなる粉末材料よりも緻密な造形物を簡便に造形できることが確認された。また、得られた造形物の硬度は、概ね、造形用材料における金属粉末とセラミック粉末との配合により、調整できる傾向にあることもわかった。すなわち、概ね、造形用材料におけるセラミック粉末と金属粉末との質量比が50:50程度の場合をピークとして、造形物の硬度が変化する傾向にあることがわかった。
しかしながら、例えば、一層厚みは、セラミック粉末と金属粉末との配合割合によらないことがわかる。一層厚みは、積層造形における造形速度や、造形精度に影響を与え得るファクターである。
【0092】
積層造形の様子の観察によると、例1,8,12の造形用材料を用いた造形では、造形用材料に熱源であるレーザを照射した際に、造形用材料が飛散してしまう様子が見て取れた。これは、例1,8,12の造形用材料の顆粒強度が1MPaと低いことから、造粒状態にあった造形用材料がレーザ照射による衝撃で破壊されてしまったことによるものと考えられる。そしてその結果として、一層厚み、すなわち造形効率が低減されたものと考えらえる。造形用材料の層を50μmとしたときの1層厚みが35μm(70%)を下回ると、例えば、かかる一層厚みを考慮して造形を行う必要がある。また、造形速度が遅くなるという欠点もある。したがって、造粒焼結粒子の形態の造形用材料については、顆粒強度が1MPaよりも高く、例えば10MPa程度以上であるのがよいといえる。
【0093】
一方で、例5,17の造形用材料を用いた造形では、造形用材料の造粒強度が強いために材料の飛散は見られなかった。しかしながら、例えば例4に示されるように、造形用材料の顆粒強度が高すぎる場合(10000MPa)は、セラミック粉末と金属粉末との焼結が十分に進行性して通常の二次粒子の形態に基づく効果が低減されたものと考えることができる。つまり、金属粉末が完全に溶融してセラミック粉末と一体化しており、二次粒子は空隙のない緻密な粉末になっていると考えられる。このような粒子はもはや造粒焼結粒子の体を為していないと考えられる。この場合、1つの粒子にレーザを照射しても、この粒子の嵩比重は高く、溶融すべき材料が増大しており、粒子自体が溶融し難くなる。このため溶融しなかった粒子が生じ、かかる粒子は造形に寄与し得ず、結果として一層厚みが薄くなってしまったと考えられる。したがって、造粒焼結粒子の形態の造形用材料については、顆粒強度が10000MPaまで高すぎない方がよいことがわかった。顆粒強度は、例えば5000MPa以下程度を目安にするとよいことがわかった。
【0094】
なお、顆粒強度が低い例1,8,12の造形用材料を用いた場合は、顆粒強度が十分な例5?7、9?11の造形用材料を用いた場合と比較して、造形時の造形用材料の状態が極めて不安定となる。その結果として、造形物の気孔率が小さくなったり、組織が不均一となり、硬度が低下するといった影響が出たものと考えられた。例えば、例1の造形用材料を用いた場合、得られた造形物の気孔率は20%程度であり、図4(a)に示すような比較的ポーラスな組織の造形物が得られた。これに対し、例6の造形用材料を用いた場合、造形物の気孔率は0.5%にまで低減され、その造形物は、図4(b)に示すような緻密な組織を有することが確認された。したがって、気孔率を低くしたり、より均一な組織で高硬度の造形物を得るとの観点からも、造形用材料の顆粒強度を適切に調整することが必要であることがわかる。
【0095】
なお、参考までに、例1の造形用材料は、セラミック粉末(ここではWC)に10質量%の金属粉末(ここではCo)を配合したものであり、得られた造形物の気孔率は20%程度であった。この例1の造形物は、例えば非特許文献2において造形された造形物(WC-10%Co粉末および、これにCu-20%Sn粉末を添加した粉末による積層造形物)と比較した場合、十分に緻密であるといえる。
【0096】
なお、例13?23は、セラミック粉末としてクロムカーバイド(CrC)を、金属粉末としてNiCr合金を用いて作製された造形用材料を用いた例である。なお、CrCは耐摩耗性材料として汎用されており、NiCr合金は、インコネル、インコロイ、ハステロイ等に代表される耐熱合金である。例えば、本例では、金属粉末の平均粒子径に対して、セラミック粉末の平均粒子径がおおよそ1/2の大きさとなっている。ここに開示される造形用材料は、このようなCrC、NiCr合金を用いた場合であっても造形物を製造し得ることわかった。しかしながら、例えば、1層厚みが35μmを下回らないようにしようとすると、造粒粒子の顆粒強度を1MPaよりも高く、例えば10MPa程度以上であって、10000MPa未満、例えば5000MPa以下程度を目安にするとよいことがわかった。
【0097】
以上、本発明を好適な実施形態により説明してきたが、こうした記述は限定事項ではなく、種々の改変が可能であることはいうまでもない。なお、具体的には示さないが、同様のことが、セラミック粉末としてホウ化モリブデン(MoB)を、金属粉末としてハステロイを用いた造形用材料、セラミック粉末としてアルミナ(Al_(2)O_(3))を、金属粉末としてインコネルを用いた造形用材料、セラミック粉末としてシリコンカーバイド(SiC)を、金属粉末としてSUS304鋼を用いた造形用材料、セラミック粉末として窒化アルミニウム(AlN)を、金属粉末として炭素鋼を用いた造形用材料、セラミック粉末として窒化ホウ素(BN)を、金属粉末としてマルエージング鋼を用いた造形用材料、セラミック粉末としてボロンカーバイド(B_(4)C)を、金属粉末としてTi-6Al-4V合金またはTi-Al合金を用いた造形用材料等において確認している。当業者であれば、ここに開示される技術の本質とその利点については、様々な態様を含めて実現し得ることを理解できる。
【符号の説明】
【0098】
10 造形エリア
11 ワイパ
12 造形用材料ストック
13 造形用材料を固化するための手段
14 昇降テーブル
20 造形用材料層
21 粉末固化層
(57)【特許請求の範囲】
【請求項1】
粉末積層造形に用いる造形用材料であって、
セラミックを含む第1粉末と、金属を含む第2粉末と、を含み、
前記第1粉末と、前記第2粉末とは、焼結により結合されて造粒焼結粒子を構成しており、
前記造粒焼結粒子の顆粒強度は、10MPa以上2500MPa以下であって、
平均粒子径は50μm以下である、造形用材料。
【請求項2】
前記造粒焼結粒子の顆粒強度は、10MPa以上1000MPa以下である、請求項1に記載の造形用材料。
【請求項3】
平均粒子径は、1μm以上100μm以下である、請求項1または2に記載の造形用材料。
【請求項4】
前記第1粉末および前記第2粉末の平均粒子径は、0.1μm以上20μm以下である、請求項1?3のいずれか1項に記載の造形用材料。
【請求項5】
前記第1粉末と前記第2粉末との合計に占める、前記第2粉末の割合は、10質量%以上90質量%以下である、請求項1?4のいずれか1項に記載の造形用材料。
【請求項6】
前記第1粉末は炭化物セラミックである、請求項1?5のいずれか1項に記載の造形用材料。
【請求項7】
請求項1?6のいずれか1項に記載の造形用材料の三次元造形物である、物品。
【請求項8】
請求項1?6のいずれか1項に記載の造形用材料を用いて三次元造形を行う、三次元造形物の製造方法。
 
訂正の要旨 審決(決定)の【理由】欄参照。
異議決定日 2021-06-22 
出願番号 特願2015-250696(P2015-250696)
審決分類 P 1 651・ 121- YAA (B28B)
P 1 651・ 536- YAA (B28B)
P 1 651・ 113- YAA (B28B)
P 1 651・ 537- YAA (B28B)
最終処分 維持  
前審関与審査官 西垣 歩美  
特許庁審判長 日比野 隆治
特許庁審判官 後藤 政博
大光 太朗
登録日 2020-02-07 
登録番号 特許第6656911号(P6656911)
権利者 株式会社フジミインコーポレーテッド
発明の名称 粉末積層造形に用いるための造形用材料  
代理人 大井 道子  
代理人 安部 誠  
代理人 安部 誠  
代理人 谷 征史  
代理人 谷 征史  
代理人 大井 道子  

プライバシーポリシー   セキュリティーポリシー   運営会社概要   サービスに関しての問い合わせ