• ポートフォリオ機能


ポートフォリオを新規に作成して保存
既存のポートフォリオに追加保存

  • この表をプリントする
PDF PDFをダウンロード
審決分類 審判 全部申し立て ただし書き1号特許請求の範囲の減縮  G03G
審判 全部申し立て ただし書き3号明りょうでない記載の釈明  G03G
審判 全部申し立て 特36条6項1、2号及び3号 請求の範囲の記載不備  G03G
管理番号 1368091
異議申立番号 異議2019-700307  
総通号数 252 
発行国 日本国特許庁(JP) 
公報種別 特許決定公報 
発行日 2020-12-25 
種別 異議の決定 
異議申立日 2019-04-18 
確定日 2020-09-17 
異議申立件数
訂正明細書 有 
事件の表示 特許第6409833号発明「疎水化処理シリカ粒子」の特許異議申立事件について、次のとおり決定する。 
結論 特許第6409833号の明細書及び特許請求の範囲を訂正請求書に添付された訂正明細書及び訂正特許請求の範囲のとおり、訂正後の請求項〔1?3〕について訂正することを認める。 特許第6409833号の請求項1、3に係る特許を取り消す。 特許第6409833号の請求項2に係る特許についての特許異議の申立てを却下する。 
理由 第1 手続の経緯
特許第6409833号の請求項1?3に係る特許についての出願は、平成25年 3月27日を出願日とする特願2013-66296号の一部を、平成28年 8月22日に特願2016-161973号として新たな特許出願としたものであって、平成30年10月 5日にその特許権の設定登録がされ、平成30年10月24日に特許掲載公報が発行された。本件特許異議申立ての経緯は、次のとおりである。

平成31年 4月18日 :特許異議申立人 星 正美(以下、「申立人」
という。)による請求項1?3に係る特許に
対する特許異議の申立て
令和 1年 8月26日付け:取消理由通知書
令和 1年10月25日 :特許権者による意見書及び訂正請求書の提出
令和 1年12月 6日 :申立人による意見書の提出
令和 2年 4月 8日付け:取消理由通知書(決定の予告)


第2 訂正の適否
令和 1年10月25日付けの訂正請求(以下、「本件訂正請求」という。)による訂正は、特許請求の範囲の減縮及び明瞭でない記載の釈明を目的とするものであり、願書に添付した明細書、特許請求の範囲又は図面に記載した事項の範囲内においてしたものであって、実質上特許請求の範囲を拡張し、又は変更するものでなく、また、一群の請求項ごとに請求をしたものと認められる。
したがって、本件訂正請求による訂正は、特許法第120条の5第2項ただし書第1号及び第3号に掲げる事項を目的とするものであり、かつ、同条第9項において準用する同法第126条第第5項及び第6項の規定に適合するので、訂正後の請求項〔1?3〕について訂正を認める。


第3 特許異議の申立てについて
本件訂正請求により訂正された請求項1、3に係る発明は、訂正特許請求の範囲の請求項1、3に記載された事項により特定されるものである。
これに対して、令和 2年 4月 8日付けで、特許法第36条第6項第2号に係る取消理由(決定の予告)を通知し、期間を指定して意見書を提出する機会を与えたが、特許権者からは応答がなかった。
そして、上記の取消理由は妥当なものと認められるので、本件請求項1、3に係る特許は、この取消理由によって取り消すべきものである。
また、訂正により請求項2は削除されたため、本件請求項2に係る特許に対する特許異議の申立てについては、対象となる請求項が存在しない。
よって、結論のとおり決定する。
 
発明の名称 (54)【発明の名称】
疎水化処理シリカ粒子
【技術分野】
【0001】
本発明は、疎水化処理シリカ粒子に関する。
【背景技術】
【0002】
電子写真法は、複写機やプリンター等に幅広く利用されている。
近年、電子写真法を利用した画像形成装置に使用される電子写真感光体(以下、「感光体」と称す場合がある)に関し、該感光体の感光層表面に表面層(保護層)を設ける技術が検討されている。
【0003】
例えば、感光体の表面層として、ダイヤモンド・ライク・カーボン(DLC)や非晶質窒化炭素(CN)、非晶質窒化珪素、酸化アルミ、酸化ガリウムのような硬質な膜が知られている(例えば、特許文献1?特許文献5参照)。
【0004】
また、導電性支持体上に少なくとも感光層を有する有機感光体において、数平均一次粒径が3?150nmの無機粒子を含有した表面層を有し、表面粗さRaが0.001?0.018であり、十点表面粗さRzが0.02?0.08μmである有機感光体知られている(例えば特許文献6参照)。
【0005】
また、導電性支持体上に直接または下引き層を介して設けられる感光層が少なくとも電荷発生物質と電荷輸送物質と結晶構造が六方稠密格子である無機フィラーとを含有し、かつ、かかる感光層の無機フィラーが導電性支持体側より最も離れた表面側の含有率が多い電子写真感光体が知られている(例えば特許文献7参照)。
【0006】
また、保護層が数平均粒径5?200nmの粒子を含有する粗さ層と、ナノインデンテーション法で測定した硬度が2?7GPaの堆積層から構成されている電子写真感光体が知られている(例えば特許文献7参照)。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開平2-110470号公報
【特許文献2】特開2003-27238号公報
【特許文献3】特開平11-186571号公報
【特許文献4】特開2006-267507号公報
【特許文献5】特開2008-268266号公報
【特許文献6】特開2006-010921号公報
【特許文献7】特開2003-098700号公報
【特許文献8】特開2009-204922号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
本発明の課題は、シリカ粒子のシラノール基が低減されたシリカ粒子を提供することである。
【課題を解決するための手段】
【0009】
上記課題は、以下の手段により解決される。即ち、
請求項1に係る発明は、
体積平均粒径が20nm以上200nm以下であり、縮合率が90%以上である燃焼法シリカ粒子の疎水化処理シリカ粒子。
【0010】
請求項3に係る発明は、
前記疎水化処理シリカ粒子が、シリカ粒子の表面にトリメチルシリル基、デシルシリル基、又はフェニルシリル基を持つシラン化合物である請求項1に記載の燃焼法シリカ粒子の疎水化処理シリカ粒子。
【発明の効果】
【0011】
請求項1?3に係る発明によれば、シリカ粒子のシラノール基が低減されたシリカ粒子が提供される。
【図面の簡単な説明】
【0012】
【図1】本実施形態の電子写真感光体の層構成の一例を示す模式断面図である。
【図2】本実施形態の電子写真感光体の層構成の別の一例を示す模式断面図である。
【図3】本実施形態の電子写真感光体の層構成の別の一例を示す模式断面図である。
【図4】本実施形態の電子写真感光体の無機保護層の形成に用いる成膜装置の一例を示す概略模式図である。
【図5】本実施形態の電子写真感光体の無機保護層の形成に用いるプラズマ発生装置の例を示す概略模式図である。
【図6】本実施形態に係る画像形成装置の一例を示す概略構成図である。
【図7】本実施形態に係る画像形成装置の他の一例を示す概略構成図である。を示す図である。
【発明を実施するための形態】
【0013】
以下、本発明の実施形態について、詳細に説明する。
【0014】
(電子写真感光体)
本実施形態に係る電子写真感光体は、導電性基体と、導電性基体上に設けられた有機感光層と、有機感光層上にその表面に接して設けられた無機保護層と、を備える。
有機感光層は、無機保護層と接する面側の領域に少なくとも電荷輸送材料及びシリカ粒子を含んで構成されている。
具体的には、有機感光層が単層型の有機感光層の場合、有機感光層は、少なくとも電荷発生層、電荷輸送材料及びシリカ粒子を含んで構成された有機感光層である。
一方、有機感光層が機能分離型の有機感光層の場合、有機感光層は、電荷発生層と、少なくとも電荷輸送材料及びシリカ粒子を含む電荷輸送層と、を導電性基体上にこの順で有する有機感光層である、但し、電荷輸送層が2層以上で構成される場合、無機保護層と接する面を構成する層(最上層)の電荷輸送層が少なくとも電荷輸送材料及びシリカ粒子を含んで構成され、その下層である電荷輸送層がシリカ粒子を含まず且つ少なくとも電荷輸送材料を含んで構成される。
【0015】
ここで、従来、有機感光層上に、その表面に接するように無機保護層を形成する技術が知られている。
しかしながら、有機感光層は柔軟性を有し、変形し易い傾向がある一方で、無機保護層は硬質ではあるが靭性に劣る傾向がある。このため、無機保護層の下地層となる有機感光層が変形すると、無機保護層に割れが生じることがある。電子写真感光体は、その表面に接して配される部材(例えば中間転写体)等から機械的は負荷が掛かり易いため、このような現象が生じやすくなると考えられる。
【0016】
そこで、本実施形態では、有機感光層において、無機保護層と接する面側の領域に少なくとも電荷輸送材料及びシリカ粒子を含んで構成させる。これにより、シリカ粒子が有機感光層の補強材としての機能を果し、少なくとも無機保護層の下地となる無機保護層と接する面側の領域において、有機感光層が変形し難くなると考えられる。このため、無機保護層の割れが抑制されると考えられる。
【0017】
一方で、有機感光層中に、補強材等の無機粒子が存在すると、当該無機粒子が残留電位を発生させる電荷蓄積サイト(トラップサイト)となり、残留電位が発生し易くなると考えられる。
しかし、シリカ粒子は、他の無機粒子に比べ誘電率が低く、残留電位を発生させる電荷蓄積サイト(トラップサイト)となり難いと考えられる。このため、残留電位の発生も抑制されると考えられる。
【0018】
以上から、本実施形態に係る電子写真感光体では、上記構成により、無機保護層の割れ、及び残留電位の発生が抑制される。
また、本実施形態に係る電子写真感光体では、シリカ粒子が他の無機粒子に比べ屈折率も低いことから、有機感光層の透明性も確保され易く、シリカ粒子を配合したことによる有機感光層の透明性低下に起因する電気特性の低下も抑制され易いという利点もある。
【0019】
以下、本実施形態に係る電子写真感光体について図面を参照しつつ詳細に説明する。なお、図面中、同一又は相当部分には同一符号を付することとし、重複する説明は省略する。
図1は、本実施形態に係る電子写真用感光体の一例を示す模式断面図である。図2乃至図3はそれぞれ本実施形態に係る電子写真感光体の他の一例を示す模式断面図である。
【0020】
図1に示す電子写真感光体7Aは、いわゆる機能分離型感光体(又は積層型感光体)であり、導電性基体4上に下引層1が設けられ、その上に電荷発生層2、電荷輸送層3、及び無機保護層5が順次形成された構造を有するものである。電子写真感光体7Aにおいては、電荷発生層2及び電荷輸送層3により有機感光層が構成されている。
そして、電荷輸送層3が、少なくとも電荷輸送材料及びシリカ粒子を含んで構成される。
【0021】
図2に示す電子写真感光体7Bは、図1に示す電子写真感光体7Aと同様に電荷発生層2と電荷輸送層3とに機能が分離され、さらに電荷輸送層3が機能分離された機能分離型感光体である。また、図3に示す電子写真感光体7Cは、電荷発生材料と電荷輸送材料とを同一の層(単層型有機感光層6(電荷発生/電荷輸送層))に含有するものである。
【0022】
図2に示す電子写真感光体7Bにおいては、導電性基体4上に下引層1が設けられ、その上に、電荷発生層2、電荷輸送層3B、電荷輸送層3A及び無機保護層5が順次形成された構造を有するものである。電子写真感光体7Bにおいては、電荷輸送層3A、電荷輸送層3B及び電荷発生層2により有機感光層が構成されている。
そして、電荷輸送層3Aが、少なくとも電荷輸送材料及びシリカ粒子を含んで構成される。一方、電荷輸送層3Bが、シリカ粒子を含まず、少なくとも電荷輸送材料を含んで構成される。
【0023】
図3に示す電子写真感光体7Cにおいては、導電性基体4上に下引層1が設けられ、その上に単層型有機感光層6、無機保護層5が順次形成された構造を有するものである。
そして、単層型有機感光層6が、少なくとも電荷発生材料、電荷輸送材料及びシリカ粒子を含んで構成される。
【0024】
なお、図1乃至図3に示す電子写真感光体において、下引層1は設けてもよいし、設けなくてもよい。
【0025】
以下、代表例として図1に示す電子写真感光体7Aに基づいて、各要素について説明する。
【0026】
-導電性基体-
導電性基体としては、従来から使用されているものであれば、如何なるものを使用してもよい。例えば、薄膜(例えばアルミニウム、ニッケル、クロム、ステンレス鋼等の金属類、及びアルミニウム、チタニウム、ニッケル、クロム、ステンレス鋼、金、バナジウム、酸化錫、酸化インジウム、酸化錫インジウム(ITO)等の膜)を設けたプラスチックフィルム等、導電性付与剤を塗布又は含浸させた紙、導電性付与剤を塗布又は含浸させたプラスチックフィルム等が挙げられる。基体の形状は円筒状に限られず、シート状、プレート状としてもよい。
なお、導電性基体は、例えば体積抵抗率が10^(7)Ω・cm未満の導電性を有するものがよい。
【0027】
導電性基体として金属パイプを用いる場合、表面は素管のままであってもよいし、予め鏡面切削、エッチング、陽極酸化、粗切削、センタレス研削、サンドブラスト、ウエットホーニングなどの処理が行われていてもよい。
【0028】
-下引層-
下引層は、導電性基体表面における光反射の防止、導電性基体から有機感光層への不要なキャリアの流入の防止などの目的で、必要に応じて設けられる。
【0029】
下引層は、例えば、結着樹脂と、必要に応じてその他添加物とを含んで構成される。
下引層に含まれる結着樹脂としては、ポリビニルブチラールなどのアセタール樹脂、ポリビニルアルコール樹脂、カゼイン、ポリアミド樹脂、セルロース樹脂、ゼラチン、ポリウレタン樹脂、ポリエステル樹脂、メタクリル樹脂、アクリル樹脂、ポリ塩化ビニル樹脂、ポリビニルアセテート樹脂、塩化ビニル-酢酸ビニル-無水マレイン酸樹脂、シリコーン樹脂、シリコーン-アルキッド樹脂、フェノール樹脂、フェノール-ホルムアルデヒド樹脂、メラミン樹脂、ウレタン樹脂などの公知の高分子樹脂化合物、また電荷輸送性基を有する電荷輸送性樹脂やポリアニリン等の導電性樹脂などが挙げられる。これらの中でも、上層の塗布溶剤に不溶な樹脂が望ましく用いられ、特にフェノール樹脂、フェノール-ホルムアルデヒド樹脂、メラミン樹脂、ウレタン樹脂、エポキシ樹脂などが望ましく用いられる。
【0030】
下引層には、シリコーン化合物、有機ジルコニウム化合物、有機チタン化合物、有機アルミニウム化合物等の金属化合物等を含有してもよい。
【0031】
金属化合物と結着樹脂との比率は、特に制限されず、所望する電子写真感光体特性を得られる範囲で設定される。
【0032】
下引層には、表面粗さ調整のために下引層中に樹脂粒子を添加してもよい。樹脂粒子としては、シリコーン樹脂粒子、架橋型ポリメタクリル酸メチル(PMMA)樹脂粒子等が挙げられる。なお、表面粗さ調整のために下引層を形成後、その表面を研磨してもよい。研磨方法としては、バフ研磨、サンドブラスト処理、ウエットホーニング、研削処理等が用いられる。
【0033】
ここで、下引層の構成として、結着樹脂と導電性粒子とを少なくとも含有する構成が挙げられる。なお、導電性粒子は、例えば体積抵抗率が10^(7)Ω・cm未満の導電性を有するものがよい。
【0034】
導電性粒子としては、例えば、金属粒子(アルミニウム、銅、ニッケル、銀などの粒子)、導電性金属酸化物粒子(酸化アンチモン、酸化インジウム、酸化スズ、酸化亜鉛などの粒子)、導電性物質粒子(カーボンファイバ、カーボンブラック、グラファイト粉末の粒子)等が挙げられる。これらの中でも、導電性金属酸化物粒子が好適である。導電性粒子は、2種以上混合して用いてもよい。
また、導電性粒子は、疎水化処理剤(例えばカップリング剤)等により表面処理を施して、抵抗調整して用いてもよい。
導電性粒子の含有量は、例えば、結着樹脂に対して、10質量%以上80質量%以下であることが望ましく、より望ましくは40質量%以上80質量%以下である。
【0035】
下引層の形成は、特に制限はなく、周知の形成方法が利用されるが、例えば、上記成分を溶媒に加えた下引層形成用塗布液の塗膜を形成し、当該塗膜を乾燥、必要に応じて加熱することで行う。
【0036】
下引層形成用塗布液を導電性基体上に塗布する方法としては、例えば、浸漬塗布法、突き上げ塗布法、ワイヤーバー塗布法、スプレー塗布法、ブレード塗布法、ナイフ塗布法、カーテン塗布法等が挙げられる。
【0037】
なお、下引層形成用塗布液中に粒子を分散させる場合、その分散方法としては、例えば、ボールミル、振動ボールミル、アトライター、サンドミル、横型サンドミル等のメディア分散機や、攪拌、超音波分散機、ロールミル、高圧ホモジナイザー等のメディアレス分散機が利用される。ここで、高圧ホモジナイザーとしては、例えば、高圧状態で分散液を液-液衝突や液-壁衝突させて分散する衝突方式や、高圧状態で微細な流路を貫通させて分散する貫通方式などが挙げられる。
【0038】
下引層の膜厚は、15μm以上が望ましく、20μm以上50μm以下がより望ましい。
【0039】
ここで、図示は省略するが、下引層と有機感光層との間に中間層をさらに設けてもよい。中間層に用いられる結着樹脂としては、ポリビニルブチラールなどのアセタール樹脂、ポリビニルアルコール樹脂、カゼイン、ポリアミド樹脂、セルロース樹脂、ゼラチン、ポリウレタン樹脂、ポリエステル樹脂、メタクリル樹脂、アクリル樹脂、ポリ塩化ビニル樹脂、ポリビニルアセテート樹脂、塩化ビニル-酢酸ビニル-無水マレイン酸樹脂、シリコーン樹脂、シリコーン-アルキッド樹脂、フェノール-ホルムアルデヒド樹脂、メラミン樹脂などの高分子樹脂化合物のほかに、ジルコニウム、チタニウム、アルミニウム、マンガン、ケイ素原子などを含有する有機金属化合物などが挙げられる。これらの化合物は、単独にあるいは複数の化合物の混合物あるいは重縮合物として用いてもよい。中でも、ジルコニウムもしくはケイ素を含有する有機金属化合物は残留電位が低く環境による電位変化が少なく、また繰り返し使用による電位の変化が少ないなど点から好適である。
【0040】
中間層の形成は、特に制限はなく、周知の形成方法が利用されるが、例えば、上記成分を溶媒に加えた中間層形成用塗布液の塗膜を形成し、当該塗膜を乾燥、必要に応じて加熱することで行われる。
【0041】
中間層形成用塗布液を下引層上に塗布する方法としては、例えば、浸漬塗布法、突き上げ塗布法、ワイヤーバー塗布法、スプレー塗布法、ブレード塗布法、ナイフ塗布法、カーテン塗布法等の通常の方法が用いられる。
【0042】
中間層は上層の塗布性改善の他に、電気的なブロッキング層の役割も果たすが、膜厚が大きすぎる場合には電気的な障壁が強くなりすぎて減感や繰り返しによる電位の上昇を引起こすことがある。したがって、中間層を形成する場合には、0.1μm以上3μm以下の膜厚範囲に設定することがよい。また、この場合の中間層を下引層として使用してもよい。
【0043】
-電荷発生層-
電荷発生層は、例えば、電荷発生材料と結着樹脂中とを含んで構成される。なお、電荷発生層は、例えば、電荷発生材料の蒸着膜で構成されていてもよい。
【0044】
電荷発生材料としては、無金属フタロシアニン、クロロガリウムフタロシアニン、ヒドロキシガリウムフタロシアニン、ジクロロスズフタロシアニン、チタニルフタロシアニン等のフタロシアニン顔料が挙げられ、特に、CuKα特性X線に対するブラッグ角(2θ±0.2゜)の少なくとも7.4゜、16.6゜、25.5゜及び28.3゜に強い回折ピークを有するクロロガリウムフタロシアニン結晶、CuKα特性X線に対するブラッグ角(2θ±0.2゜)の少なくとも7.7゜、9.3゜、16.9゜、17.5゜、22.4゜及び28.8゜に強い回折ピークを有する無金属フタロシアニン結晶、CuKα特性X線に対するブラッグ角(2θ±0.2゜)の少なくとも7.5゜、9.9゜、12.5゜、16.3゜、18.6゜、25.1゜及び28.3゜に強い回折ピークを有するヒドロキシガリウムフタロシアニン結晶、CuKα特性X線に対するブラッグ角(2θ±0.2゜)の少なくとも9.6゜、24.1゜及び27.2゜に強い回折ピークを有するチタニルフタロシアニン結晶が挙げられる。その他、電荷発生材料としては、キノン顔料、ペリレン顔料、インジゴ顔料、ビスベンゾイミダゾール顔料、アントロン顔料、キナクリドン顔料等が挙げられる。また、これらの電荷発生材料は、単独又は2種以上を混合して用いてもよい。
【0045】
電荷発生層を構成する結着樹脂としては、例えば、ビスフェノールAタイプあるいはビスフェノールZタイプ等のポリカーボネート樹脂、アクリル樹脂、メタクリル樹脂、ポリアリレート樹脂、ポリエステル樹脂、ポリ塩化ビニル樹脂、ポリスチレン樹脂、アクリロニトリル-スチレン共重合体樹脂、アクリロニトリル-ブタジエン共重合体、ポリビニルアセテート樹脂、ポリビニルホルマール樹脂、ポリスルホン樹脂、スチレン-ブタジエン共重合体樹脂、塩化ビニリデン-アクリルニトリル共重合体樹脂、塩化ビニル-酢酸ビニル-無水マレイン酸樹脂、シリコーン樹脂、フェノール-ホルムアルデヒド樹脂、ポリアクリルアミド樹脂、ポリアミド樹脂、ポリ-N-ビニルカルバゾール樹脂等が挙げられる。これらの結着樹脂は、単独又は2種以上混合して用いてもよい。
なお、電荷発生材料と結着樹脂の配合比は、例えば10:1乃至1:10の範囲が望ましい。
【0046】
電荷発生層の形成は、特に制限はなく、周知の形成方法が利用されるが、例えば、上記成分を溶媒に加えた電荷発生層形成用塗布液の塗膜を形成し、当該塗膜を乾燥、必要に応じて加熱することで行う。なお、電荷発生層の形成は、電荷発生材料の蒸着により行ってもよい。
【0047】
電荷発生層形成用塗布液を下引層上(又は中間層上)に塗布する方法としては、例えば、浸漬塗布法、突き上げ塗布法、ワイヤーバー塗布法、スプレー塗布法、ブレード塗布法、ナイフ塗布法、カーテン塗布法等が挙げられる。
【0048】
なお、電荷発生層形成用塗布液中に粒子(例えば電荷発生材料)を分散させる方法としては、例えば、ボールミル、振動ボールミル、アトライター、サンドミル、横型サンドミル等のメディア分散機や、攪拌、超音波分散機、ロールミル、高圧ホモジナイザー等のメディアレス分散機が利用される。高圧ホモジナイザーとしては、例えば、高圧状態で分散液を液-液衝突や液-壁衝突させて分散する衝突方式や、高圧状態で微細な流路を貫通させて分散する貫通方式などが挙げられる。
【0049】
電荷発生層の膜厚は、望ましくは0.01μm以上5μm以下、より望ましくは0.05μm以上2.0μm以下の範囲に設定される。
【0050】
-電荷輸送層-
・電荷輸送層の組成
電荷輸送層は、電荷輸送材料と、シリカ粒子と、必要に応じて結着樹脂と、を含んで構成される。
【0051】
電荷輸送材料としては、例えば、2,5-ビス(p-ジエチルアミノフェニル)-1,3,4-オキサジアゾール等のオキサジアゾール誘導体、1,3,5-トリフェニル-ピラゾリン、1-[ピリジル-(2)]-3-(p-ジエチルアミノスチリル)-5-(p-ジエチルアミノスチリル)ピラゾリン等のピラゾリン誘導体、トリフェニルアミン、トリス[4-(4,4-ジフェニル-1,3-ブタジエニル)フェニル]アミン、N,N′-ビス(3,4-ジメチルフェニル)ビフェニル-4-アミン、トリ(p-メチルフェニル)アミニル-4-アミン、ジベンジルアニリン等の芳香族第3級アミノ化合物、N,N′-ビス(3-メチルフェニル)-N,N′-ジフェニルベンジジン等の芳香族第3級ジアミノ化合物、3-(4′-ジメチルアミノフェニル)-5,6-ジ-(4′-メトキシフェニル)-1,2,4-トリアジン等の1,2,4-トリアジン誘導体、4-ジエチルアミノベンズアルデヒド-1,1-ジフェニルヒドラゾン等のヒドラゾン誘導体、2-フェニル-4-スチリル-キナゾリン等のキナゾリン誘導体、6-ヒドロキシ-2,3-ジ(p-メトキシフェニル)ベンゾフラン等のベンゾフラン誘導体、p-(2,2-ジフェニルビニル)-N,N-ジフェニルアニリン等のα-スチルベン誘導体、エナミン誘導体、N-エチルカルバゾール等のカルバゾール誘導体、ポリ-N-ビニルカルバゾール及びその誘導体などの正孔輸送物質、クロラニル、ブロモアントラキノン等のキノン系化合物、テトラシアノキノジメタン系化合物、2,4,7-トリニトロフルオレノン、2,4,5,7-テトラニトロ-9-フルオレノン等のフルオレノン化合物、キサントン系化合物、チオフェン化合物等の電子輸送物質、及び上記した化合物からなる基を主鎖又は側鎖に有する重合体などが挙げられる。これらの電荷輸送材料は、1種又は2種以上を組み合わせて用いてもよい。
【0052】
電荷輸送材料の含有量は、電荷輸送層の全成分の質量からシリカ粒子の質量を引いた質量に対して、40質量%以上がよく、望ましくは40質量%以上70質量%以下、より望ましくは40質量%以上60質量%以下である。
また、電荷輸送材料の含有量は、シリカ粒子よりも少ないことがよい。
電荷輸送材料の含有量を上記範囲とすると、残留電位の発生が抑制され易くなる。
【0053】
シリカ粒子としては、例えば、乾式シリカ粒子、湿式シリカ粒子が挙げられる。
乾式シリカ粒子としては、シラン化合物を燃焼させて得られる燃焼法シリカ(ヒュームドシリカ)、金属珪素粉を爆発的に燃焼させて得られる爆燃法シリカが挙げられる。
湿式シリカ粒子としては、珪酸ナトリウムと鉱酸との中和反応によって得られる湿式シリカ粒子(アルカリ条件で合成・凝集した沈降法シリカ、酸性条件で合成・凝集したゲル法シリカ粒子)、酸性珪酸をアルカリ性にして重合することで得られるコロイダルシリカ粒子(シリカゾル粒子)、有機シラン化合物(例えばアルコキシシラン)の加水分解によって得られるゾルゲル法シリカ粒子が挙げられる。
これらの中でも、シリカ粒子としては、残留電位の発生、その他電気特性の悪化による画像欠陥の抑制(細線再現性の悪化の抑制)の観点から、表面のシラノール基が少なく、低い空隙構造を持つ燃焼法シリカ粒子が望ましい。
【0054】
シリカ粒子の体積平均粒径は、例えば、20nm以上200nm以下であることがよく、望ましくは30nm以上200nm以下、より望ましくは40nm以上150nm以下である。
この体積平均粒径を上記範囲とすると、無機保護層の割れ、及び残留電位の発生が抑制され易くなる。
この体積平均粒径は、層中からシリカ粒子を分離し、このシリカ粒子の一次粒子100個をSEM(Scanning Electron Microscope)装置により40000倍の倍率で観察し、一次粒子の画像解析によって粒子ごとの最長径、最短径を測定し、この中間値から球相当径を測定する。得られた球相当径の累積頻度における50%径(D50v)を求め、これをシリカ粒子の体積平均粒径として測定する。
【0055】
シリカ粒子は、その表面が疎水化処理剤で表面処理されていることがよい。これにより、シリカ粒子の表面のシラノール基が低減し、残留電位の発生が抑制され易くなる。
疎水化処理剤としては、クロロシラン、アルコキシシラン、シラザン等の周知のシラン化合物が挙げられる。
これらの中でも、疎水化処理剤としては、残留電位の発生を抑制し易くする観点から、トリメチルシリル基、デシルシリル基、又はフェニルシリル基を持つシラン化合物が望ましい。つまり、シリカ粒子の表面には、トリメチルシリル基、デシルシリル基、又はフェニルシリル基を有することがよい。
トリメチルシリル基を持つシラン化合物としては、例えば、トリメチルクロロシラン、トリメチルメトキシシラン、1,1,1,3,3,3-ヘキサメチルジシラザン等が挙げられる。
デシルシリル基を持つシラン化合物としては、例えば、デシルトリクロロシラン、デシルトリクロロシラン、デシルジメチルクロロシラン、デシルトリメトキシシラン等が挙げられる。
フェニル基を持つシラン化合物としては、トリフェニルメトキシシラン、トリフェニルクロロシラン等が挙げられる。
【0056】
疎水化処理されたシリカ粒子の縮合率(シリカ粒子中のSiO_(4)-の結合におけるSi-O-Siの率:以下「疎水化処理剤の縮合率」という)は、例えば、シリカ粒子の表面のシラノール基に対して90%以上がよく、望ましくは91%以上、より望ましくは95%以上である。
疎水化処理剤の縮合率を上記範囲にすると、シリカ粒子のシラノール基が低減し、残留電位の発生が抑制され易くなる。
【0057】
疎水化処理剤の縮合率は、NMRで検出した縮合部のケイ素の全結合可能サイトに対して、縮合したケイ素の割合を示しており、次のようにして測定する。
まず、層中からシリカ粒子を分離する。分離したシリカ粒子に対して、Bruker製AVANCEIII 400でSi CP/MAS NMR分析を行い、SiOの置換数に応じたピーク面積を求め、それぞれ、2置換(Si(OH)_(2)(0-Si)_(2)-)、3置換(Si(OH)(0-Si)_(3)-)、4置換(Si(0-Si)_(4)-)の値をQ2,Q3,Q4とし、疎水化処理剤の縮合率は式:(Q2×2+Q3×3+Q4×4)/4×(Q2+Q3+Q4)により算出する。
【0058】
シリカ粒子の体積抵抗率は、例えば、10^(11)Ω・cm以上がよく、望ましくは10^(12)Ω・cm以上、より望ましくは10^(13)Ω・cm以上である。
シリカ粒子の体積抵抗率を上記範囲にすると、細線再現性の悪化が抑制される。
【0059】
シリカ粒子の体積抵抗率は、次のようにして測定する。なお、測定環境は、温度20℃、湿度50%RHとする。
まず、層中からシリカ粒子を分離する。そして、20cm^(2)の電極板を配した円形の治具の表面に、測定対象となる分離したシリカ粒子を1mm以上3mm以下程度の厚さになるように載せ、シリカ粒子層を形成する。この上に前記同様の20cm^(2)の電極板を載せシリカ粒子層を挟み込む。シリカ粒子間の空隙をなくすため、シリカ粒子層上に載置した電極板の上に4kgの荷重をかけてからシリカ粒子層の厚み(cm)を測定する。疎水化処理シリカ粒子層上下の両電極には、エレクトロメーター及び高圧電源発生装置に接続されている。両電極に電界が所定の値となるように高電圧を印加し、このとき流れた電流値(A)を読み取ることにより、シリカ粒子の体積抵抗率(Ω・cm)を計算する。シリカ粒子の体積抵抗率(Ω・cm)の計算式は、下式に示す通りである。
なお、式中、ρは疎水化処理シリカ粒子の体積抵抗率(Ω・cm)、Eは印加電圧(V)、Iは電流値(A)、I_(0)は印加電圧0Vにおける電流値(A)、Lは疎水化処理シリカ粒子層の厚み(cm)をそれぞれ表す。本評価では印加電圧が1000Vの時の体積抵抗率を用いた。
・式:ρ=E×20/(I-I_(0))/L
【0060】
シリカ粒子の含有量は、電荷輸送層全体に対して、例えば、30質量%以上70質量%以下がよく、望ましくは40質量%以上70質量%以下、より望ましくは45質量%以上65質量%以下である。
また、シリカ粒子の含有量は、電荷輸送材料の含有量よりも多いことがよい。
シリカ粒子の含有量を上記範囲とすると、無機保護層の割れ、及び残留電位の発生が抑制され易くなる。
【0061】
電荷輸送層を構成する結着樹脂としては、例えば、ビスフェノールAタイプあるいはビスフェノールZタイプ等のポリカーボネート樹脂、があげられる。 なお、電荷輸送材料と上記結着樹脂との配合比は、例えば10:1乃至1:5が望ましい。
【0062】
・電荷輸送層の特性
電荷輸送層における無機保護層側の表面の表面粗さRa(算術平均表面粗さRa)は、例えば、0.06μm以下がよく、望ましくは0.03μm以下、より望ましくは0.02μm以下である。
この表面粗さRaを上記範囲とすると、クリーニング性が向上する。
なお、表面粗さRaを上記範囲とするには、例えば、配合する層の厚みを厚くする等の方法が挙げられる
【0063】
この表面粗さRaは、次のように測定する。
まず、無機保護層を剥離した後、測定対象となる層を露出させる。そして、その層の一部をカッター等で切り出し、測定試料を取得する。
この測定試料に対して、触針式表面粗さ測定機(サーフコム1400A:東京精密社製等)を使用して測定する。その測定条件としては、JIS B0601-1994に準拠し、評価長さLn=4mm、基準長さL=0.8mm、カットオフ値=0.8mmとする。
【0064】
電荷輸送層の弾性率は、例えば、5GPa以上がよく、望ましくは6GPa以上、より望ましくは6.5GPa以上である。
電荷輸送層の弾性率を上記範囲とすると、無機保護層の割れが抑制され易くなる。
なお、電荷輸送層の弾性率を上記範囲とするには、例えば、シリカ粒子の粒径及び含有量を調整する方法、電荷輸送材料の種類及び含有量を調整する方法が挙げられる。
【0065】
電荷輸送層の弾性率は、次のように測定する。
まず、無機保護層を剥離した後、測定対象となる層を露出させる。そして、その層の一部をカッター等で切り出し、測定試料を取得する。
この測定試料に対して、MTSシステムズ社製 Nano Indenter SA2を用いて、連続剛性法(CSM)(米国特許4848141)により深さプロファイルを得て、その押込み深さ30nmから100nmの測定値から得た平均値を用いて測定する。
【0066】
電荷輸送層の膜厚は、例えば、10μm以上40μm以下がよく、望ましくは10μm以上35μm以下、より望ましくは15μm以上30μm以下である。
電荷輸送層の膜厚を上記範囲にすると、無機保護層の割れ、及び残留電位の発生が抑制され易くなる。
【0067】
・電荷輸送層の形成
電荷輸送層の形成は、特に制限はなく、周知の形成方法が利用されるが、例えば、上記成分を溶媒に加えた電荷輸送層形成用塗布液の塗膜を形成し、当該塗膜を乾燥、必要に応じて加熱することで行う。
【0068】
電荷輸送層形成用塗布液を電荷発生層上に塗布する方法としては、例えば、浸漬塗布法、突き上げ塗布法、ワイヤーバー塗布法、スプレー塗布法、ブレード塗布法、ナイフ塗布法、カーテン塗布法等の通常の方法を用いられる。
【0069】
なお、電荷輸送層形成用塗布液中に粒子(例えばシリカ粒子やフッ素樹脂粒子)を分散させる場合、その分散方法としては、例えば、ボールミル、振動ボールミル、アトライター、サンドミル、横型サンドミル等のメディア分散機や、攪拌、超音波分散機、ロールミル、高圧ホモジナイザー等のメディアレス分散機が利用される。高圧ホモジナイザーとしては、例えば、高圧状態で分散液を液-液衝突や液-壁衝突させて分散する衝突方式や、高圧状態で微細な流路を貫通させて分散する貫通方式などが挙げられる。
【0070】
-無機保護層-
・無機保護層の組成
無機保護層は、無機材料を含んで構成された層である。
無機材料としては、保護層としての機械的強度、透光性を有するという観点から、例えば、酸化物系、窒化物系、炭素系、珪素系の無機材料が挙げられる。
酸化物系の無機材料としては、例えば、酸化ガリウム、酸化アルミニウム、酸化亜鉛、酸化チタン、酸化インジウム、酸化錫、酸化ホウ素等の金属酸化物、又はこれらの混晶が挙げられる。
窒化物系の無機材料としては、例えば、窒化ガリウム、窒化アルミニウム、窒化亜鉛、窒化チタン、窒化インジウム、窒化錫、窒化ホウ素等の金属窒化物、又はこれらの混晶が挙げられる。
炭素系及び珪素系の無機材料としては、例えば、ダイヤモンドライクカーボン(DLC)、アモルファスカーボン(a-C)、水素化アモルファスカーボン(a-C:H)、水素・フッ素化アモルファスカーボン(a-C:H)、アモルファスシリコンカーバイト(a-SiC)、水素化アモルファスシリコンカーバイト(a-SiC:H)アモルファスシリコン(a-Si)、水素化アモルファスシリコン(a-Si:H)等が挙げられる。
なお、無機材料は、酸化物系及び窒化物系の無機材料の混晶であってもよい。
【0071】
これらの中でも、無機材料としては、金属酸化物は、機械的強度、透光性に優れ、特にn型導電性を有し、その導電制御性に優れるという観点から、金属酸化物、特に、第13族元素の酸化物(望ましくは酸化ガリウム)が望ましい。
つまり、無機保護層は、少なくとも第13族元素(特にガリウム)及び酸素を含んで構成されることがよく、必要応じて、水素を含んで構成されていてもよい。水素を含むことで、少なくとも第13族元素(特にガリウム)及び酸素を含んで構成された無機保護層の諸物性が容易に制御され易くなる。例えば、ガリウム、酸素、及び水素を含む無機保護層(水素を含む酸化ガリウムで構成された無機保護層)において、組成比[O]/[Ga]を1.0から1.5と変化させることで、10^(9)Ω・cm以上10^(14)Ω・cmの範囲で体積抵抗率の制御が実現され易くなる。
【0072】
無機保護層には、上記無機材料の他、導電型の制御のために、例えば、n型の場合、C、Si、Ge、Snから選ばれる1つ以上の元素を含んでいてもよい。また、例えば、p型の場合、N、Be、Mg、Ca、Srから選ばれる1つ以上の元素を含んでいてもよい。
【0073】
ここで、無機保護層が、ガリウムと酸素と必要に応じて水素とを含んで構成された場合、機械的強度、透光性、柔軟性に優れ、その導電制御性に優れるという観点から、好適な元素構成比率は以下の通りである。
ガリウムの元素構成比率は、例えば、無機保護層の全構成元素に対して、15原子%以上50原子%以下であることがよく、望ましくは20原子%以上40原子%以下、より望ましくは20原子%以上30原子%以下である。
酸素の元素構成比率は、例えば、無機保護層の全構成元素に対して、30原子%以上70原子%以下であることがよく、望ましくは40原子%以上60原子%以下、より望ましくは45原子%以上55原子%以下である。
水素の元素構成比率は、例えば、無機保護層の全構成元素に対して、10原子%以上40原子%以下であることがよく、望ましくは15原子%以上35原子%以下、より望ましくは20原子%以上30原子%以下である。
一方で、原子数比〔酸素/ガリウム〕は、1.50を超え2.20以下であることがよく、望ましくは1.6以上2.0以下である。
【0074】
ここで、無機保護層における各元素の元素構成比率、原子数比等は、厚み方向の分布も含めてラザフォードバックスキャタリング(以下、「RBS」と称する)により求められる
なお、RBSでは、加速器としてNEC社 3SDH Pelletron、エンドステーションとしてCE&A社 RBS-400、システムとして3S-R10を用いる。解析にはCE&A社のHYPRAプログラム等を用いる。
なお、RBSの測定条件は、He++イオンビームエネルギーは2.275eV、検出角度160°、入射ビームに対してGrazing Angleは約109°とする。
【0075】
RBS測定は、具体的には以下のように行う
まず、He++イオンビームを試料に対して垂直に入射し、検出器をイオンビームに対して、160°にセットし、後方散乱されたHeのシグナルを測定する。検出したHeのエネルギーと強度から組成比と膜厚を決定する。組成比及び膜厚を求める精度を向上させるために二つの検出角度でスペクトルを測定してもよい。深さ方向分解能や後方散乱力学の異なる二つの検出角度で測定しクロスチェックすることにより精度が向上する。
ターゲット原子によって後方散乱されるHe原子の数は、1)ターゲット原子の原子番号、2)散乱前のHe原子のエネルギー、3)散乱角度の3つの要素のみにより決まる。
測定された組成から密度を計算によって仮定して、これを用いて厚みを算出する。密度の誤差は20%以内である。
【0076】
なお、水素の元素構成比率は、ハイドロジェンフォワードスキャタリング(以下、「HFS」と称する)により求められる。
HFS測定では、加速器としてNEC社 3SDH Pelletron、エンドステーションとしてCE&A社 RBS-400を用い、システムとして3S-R10を用いる。解析にはCE&A社のHYPRAプログラムを用いる。そして、HFSの測定条件は、以下の通りである。
・He++イオンビームエネルギー:2.275eV
・検出角度:160°入射ビームに対してGrazing Angle30°
【0077】
HFS測定は、He++イオンビームに対して検出器が30°に、試料が法線から75°になるようにセットすることにより、試料の前方に散乱する水素のシグナルを拾う。この時検出器をアルミ箔で覆い、水素とともに散乱するHe原子を取り除くことがよい。定量は参照用試料と被測定試料との水素のカウントを阻止能で規格化した後に比較することによって行う。参照用試料としてSi中にHをイオン注入した試料と白雲母を使用する。
白雲母は水素濃度が6.5原子%であることが知られている。
最表面に吸着しているHは、例えば、清浄なSi表面に吸着しているH量を差し引くことによって補正を行う。
【0078】
・無機保護層の特性
無機保護層は、目的に応じて、厚み方向に組成比に分布を有していてもよいし、多層構成からなるものであってもよい。
【0079】
無機保護層は、微結晶膜、多結晶膜、非晶質膜などの非単結晶膜であることが望ましい。これらの中でも、非晶質は表面の平滑性で特に望ましいが、微結晶膜は硬度の点でより望ましい。
無機保護層の成長断面は、柱状構造をとっていてもよいが、滑り性の観点からは平坦性の高い構造が望ましく、非晶質が望ましい。
なお、結晶性、非晶質性は、RHEED(反射高速電子線回折)測定により得られた回折像の点や線の有無により判別される。
【0080】
無機保護層の体積抵抗率は、10^(6)Ω・cm以上であることがよく、望ましくは10^(8)Ω・cm以上である。
この体積抵抗率を上記範囲とすると、電荷が面内方向に流れることが抑制され、良好な静電潜像形成が実現され易くなる。
この体積抵抗率は、nF社製LCRメーターZM2371を用いて、周波数1kHz、電圧1Vの条件にて測定した抵抗値から、電極面積、試料厚みに基づき算出して求められる。
なお、測定試料は、測定対象となる無機保護層の成膜時の同条件でアルミ基材上に成膜し、その成膜物上に真空蒸着により金電極を形成し得られた試料であってもよいし、又は作製後の電子写真感光体から無機保護層を剥離し、一部エッチングして、これを一対の電極で挟み込んだ試料であってもよい。
【0081】
無機保護層の弾性率はで30GPa以上80GPa以下であることがよく、望ましくは40GPa以上65GPa以下である。
この弾性率を上記範囲とすると、無機保護層の凹部(打痕状の傷)の発生、剥れや割れが抑制され易くなる。
この弾性率は、MTSシステムズ社製 Nano Indenter SA2を用いて、連続剛性法(CSM)(米国特許4848141)により深さプロファイルを得て、その押込み深さ30nmから100nmの測定値から得た平均値を用いる。下記は測定条件である。
・測定環境:23℃、55%RH
・使用圧子:ダイヤモンド製正三角錐圧子(Berkovic圧子)三角錐圧子
・試験モード:CSMモード
なお、測定試料は、測定対象となる無機保護層の成膜時の同条件で基材上に成膜した試料であってもよいし、又は作製後の電子写真感光体から無機保護層を剥離し、一部エッチングした試料であってもよい。
【0082】
無機保護層の膜厚は、例えば、0.2μm以上10.0μm以下であることがよく、望ましくは0.4μm以上5.0μm以下である。
この膜厚を上記範囲とすると、無機保護層の凹部(打痕状の傷)の発生、剥れや割れが抑制され易くなる。
【0083】
・無機保護層の形成
保護層の形成には、例えば、プラズマCVD(Chemical Vapor Deposition)法、有機金属気相成長法、分子線エキタピシー法、蒸着、スパッタリング等の公知の気相成膜法が利用される。
【0084】
以下、無機保護層の形成について、成膜装置の一例を図面に示しつつ具体例を挙げて説明する。なお、以下の説明は、ガリウム、酸素、及び水素を含んで構成された無機保護層の形成方法について示すが、これに限られず、目的とする無機保護層の組成に応じて、周知の形成方法を適用すればよい。
【0085】
図4は、本実施形態に係る電子写真感光体の無機保護層の形成に用いる成膜装置の一例を示す概略模式図であり、図4(A)は、成膜装置を側面から見た場合の模式断面図を表し、図4(B)は、図4(A)に示す成膜装置のA1-A2間における模式断面図を表す。図4中、210は成膜室、211は排気口、212は基体回転部、213は基体支持部材、214は基体、215はガス導入管、216はガス導入管215から導入したガスを噴射する開口を有するシャワーノズル、217はプラズマ拡散部、218は高周波電力供給部、219は平板電極、220はガス導入管、221は高周波放電管部である。
【0086】
図4に示す成膜装置において、成膜室210の一端には、不図示の真空排気装置に接続された排気口211が設けられており、成膜室210の排気口211が設けられた側と反対側に、高周波電力供給部218、平板電極219及び高周波放電管部221からなるプラズマ発生装置が設けられている。
このプラズマ発生装置は、高周波放電管部221と、高周波放電管部221内に配置され、放電面が排気口211側に設けられた平板電極219と、高周波放電管部221外に配置され、平板電極219の放電面と反対側の面に接続された高周波電力供給部218とから構成されたものである。なお、高周波放電管部221には、高周波放電管部221内にガスを供給するためのガス導入管220が接続されており、このガス導入管220のもう一方の端は、不図示の第1のガス供給源に接続されている。
【0087】
なお、図4に示す成膜装置に設けられたプラズマ発生装置の代わりに、図5に示すプラズマ発生装置を用いてもよい。図5は、図4に示す成膜装置において利用されるプラズマ発生装置の他の例を示す概略模式図であり、プラズマ発生装置の側面図である。図5中、222が高周波コイル、223が石英管を表し、220は、図4中に示すものと同様である。このプラズマ発生装置は、石英管223と、石英管223の外周面沿って設けられた高周波コイル222とからなり、石英管223の一方の端は成膜室210(図5中、不図示)と接続されている。また、石英管223のもう一方の端には、石英管223内にガスを導入するためのガス導入管220が接続されている。
【0088】
図4において、平板電極219の放電面側には、放電面に沿って延びる棒状のシャワーノズル216が接続されており、シャワーノズル216の一端は、ガス導入管215と接続されており、このガス導入管215は成膜室210外に設けられた不図示の第2のガス供給源と接続されている。
また、成膜室210内には、基体回転部212が設けられており、円筒状の基体214が、シャワーノズル216の長手方向と基体214の軸方向とが沿って対面するように基体支持部材213を介して基体回転部212に取りつけられるようになっている。成膜に際しては、基体回転部212が回転することによって、基体214が周方向に回転する。なお、基体214としては、例えば、予め有機感光層まで積層された感光体等が用いられる。
【0089】
無機保護層の形成は、例えば、以下のように実施する。
まず、酸素ガス(又は、ヘリウム(He)希釈酸素ガス)、ヘリウム(He)ガス、及び必要に応じ水素(H_(2))ガスを、ガス導入管220から高周波放電管部221内に導入すると共に、高周波電力供給部218から平板電極219に、13.56MHzのラジオ波を供給する。この際、平板電極219の放電面側から排気口211側へと放射状に広がるようにプラズマ拡散部217が形成される。ここで、ガス導入管220から導入されたガスは成膜室210を平板電極219側から排気口211側へと流れる。平板電極219は電極の周りをアースシールドで囲んだものでもよい。
【0090】
次に、トリメチルガリウムガスをガス導入管215、活性化手段である平板電極219の下流側に位置するシャワーノズル216を介して成膜室210に導入することによって、基体214表面にガリウムと酸素と水素とを含む非単結晶膜を成膜する。
基体214としては、例えば、有機感光層が形成された基体を用いる。
【0091】
無機保護層の成膜時の基体214表面の温度は、有機感光層を有する有機感光体を用いるので、150℃以下が望ましく、100℃以下がより望ましく、30℃以上100℃以下が特に望ましい。
基体214表面の温度が成膜開始当初は150℃以下であっても、プラズマの影響で150℃より高くなる場合には有機感光層が熱で損傷を受ける場合があるため、この影響を考慮して基体214の表面温度を制御することが望ましい。
基体214表面の温度は加熱及び/又は冷却手段(図中、不図示)によって制御してもよいし、放電時の自然な温度の上昇に任せてもよい。基体214を加熱する場合にはヒータを基体214の外側や内側に設置してもよい。基体214を冷却する場合には基体214の内側に冷却用の気体又は液体を循環させてもよい。
放電による基体214表面の温度の上昇を避けたい場合には、基体214表面に当たる高エネルギーの気体流を調節することが効果的である。この場合、ガス流量や放電出力、圧力などの条件を所要温度となるように調整する。
【0092】
また、トリメチルガリウムガスの代わりにアルミニウムを含む有機金属化合物やジボラン等の水素化物を用いることもでき、これらを2種類以上混合してもよい。
例えば、無機保護層の形成の初期において、トリメチルインジウムをガス導入管215、シャワーノズル216を介して成膜室210内に導入することにより、基体214上に窒素とインジウムとを含む膜を成膜すれば、この膜が、継続して成膜する場合に発生し、有機感光層を劣化させる紫外線を吸収する。このため、成膜時の紫外線の発生による有機感光層へのダメージが抑制される。
【0093】
また、成膜時におけるドーパントのドーピングの方法としては、n型用としてはSiH_(3),SnH_(4)を、p型用としては、ビスシクロペンタジエニルマグネシウム、ジメチルカルシウム、ジメチルストロンチウム、などをガス状態で使用する。また、ドーパント元素を表面層中にドーピングするには、熱拡散法、イオン注入法等の公知の方法を採用してもよい。
具体的には、例えば、少なくとも一つ以上のドーパント元素を含むガスをガス導入管215、シャワーノズル216を介して成膜室210内に導入することによって、n型、p型等の導電型の無機保護層を得る。
【0094】
図4及び図5を用いて説明した成膜装置では、放電エネルギーにより形成される活性窒素又は活性水素を、活性装置を複数設けて独立に制御してもよいし、NH_(3)など、窒素原子と水素原子を同時に含むガスを用いてもよい。さらにH_(2)を加えてもよい。また、有機金属化合物から活性水素が遊離生成する条件を用いてもよい。
このようにすることで、基体214表面上には、活性化された、炭素原子、ガリウム原子、窒素原子、水素原子、等が制御された状態で存在する。そして、活性化された水素原子が、有機金属化合物を構成するメチル基やエチル基等の炭化水素基の水素を分子として脱離させる効果を有する。
このため、三次元的な結合を構成する硬質膜(無機保護層)が形成される。
【0095】
図4及び図5に示す成膜装置のプラズマ発生手段は、高周波発振装置を用いたものであるが、これに限定されるものではなく、例えば、マイクロ波発振装置を用いたり、エレクトロサイクロトロン共鳴方式やヘリコンプラズマ方式の装置を用いてもよい。また、高周波発振装置の場合は、誘導型でも容量型でもよい。
さらに、これらの装置を2種類以上組み合わせて用いてもよく、あるいは、同種の装置を2つ以上用いてもよい。プラズマの照射によって基体214表面の温度上昇を抑制するためには高周波発振装置が望ましいが、熱の照射を抑制する装置を設けてもよい。
【0096】
2種類以上の異なるプラズマ発生装置(プラズマ発生手段)を用いる場合には、同じ圧力で同時に放電が生起されるようにすることが望ましい。また、放電する領域と、成膜する領域(基体が設置された部分)とに圧力差を設けてもよい。これらの装置は、成膜装置内をガスが導入される部分から排出される部分へと形成されるガス流に対して直列に配置してもよいし、いずれの装置も基体の成膜面に対向するように配置してもよい。
【0097】
例えば、2種類のプラズマ発生手段をガス流に対して直列に設置する場合、図4に示す成膜装置を例に上げれば、シャワーノズル216を電極として成膜室210内に放電を起こさせる第2のプラズマ発生装置として利用される。この場合、例えば、ガス導入管215を介して、シャワーノズル216に高周波電圧を印加して、シャワーノズル216を電極として成膜室210内に放電を起こさせる。あるいは、シャワーノズル216を電極として利用する代わりに、成膜室210内の基体214と平板電極219との間に円筒状の電極を設けて、この円筒状電極を利用して、成膜室210内に放電を起こさせる。
また、異なる2種類のプラズマ発生装置を同一の圧力下で利用する場合、例えば、マイクロ波発振装置と高周波発振装置とを用いる場合、励起種の励起エネルギーを大きく変えることができ、膜質の制御に有効である。また、放電は大気圧近傍(70000Pa以上110000Pa以下)で行ってもよい。大気圧近傍で放電を行う場合にはキャリアガスとしてHeを使用することが望ましい。
【0098】
無機保護層の形成は、例えば、成膜室210に基体上に有機感光層を形成した基体214を設置し、各々組成の異なる混合ガスを導入して、無機保護層を形成する。
【0099】
また、成膜条件としては、例えば高周波放電により放電する場合、低温で良質な成膜を行うには、周波数として10kHz以上50MHz以下の範囲とすることが望ましい。また、出力は基体214の大きさに依存するが、基体の表面積に対して0.01W/cm^(2)以上0.2W/cm^(2)以下の範囲とすることが望ましい。基体214の回転速度は0.1rpm以上500rpm以下の範囲が望ましい。
【0100】
以上、電子写真感光体として有機感光層が機能分離型で、電荷輸送層が単層型の例を説明したが、図2に示される電子写真感光体(有機感光層が機能分離型で、電荷輸送層が複層型の例)の場合、無機保護層5と接する電荷発生層3Aは図1に示す電子写真感光体の電荷輸送層3と同じ構成とする一方で、無機保護層5と接しない電荷輸送層3Bは周知の電荷輸送層と同じ構成とすることがよい。
但し、電荷発生層3Aの膜厚は、1μm以上15μm以下とすることがよい。また、電荷輸送層3Bの膜厚は、15μm以上29μmとすることがよい。
【0101】
一方、図3に示される電子写真感光体(有機感光層が単層型の例)の場合、単層側有機感光層6(電荷発生/電荷輸送層)は、電子写真感光体の電荷輸送層3と電荷発生材料を含む以外は同じ構成とすることがよい。
但し、単層側有機感光層6中の電荷発生材料の含有量は、単層側有機感光層全体に対して、25質量%以上50質量%以下とすることがよい。
また、単層側有機感光層6の膜厚は、15μm以上30μmとすることがよい。
【0102】
(プロセスカートリッジ及び画像形成装置)
図6は、本実施形態に係る画像形成装置の一例を示す概略構成図である。
本実施形態に係る画像形成装置101は、図6に示すように、例えば、矢印aで示すように、時計回り方向に回転する電子写真感光体10(上記本実施形態に係る電子写真感光体)と、電子写真感光体10の上方に、電子写真感光体10に相対して設けられ、電子写真感光体10の表面を帯電させる帯電装置20(帯電手段の一例)と、帯電装置20により帯電した電子写真感光体10の表面に露光して、静電潜像を形成する露光装置30(静電潜像形成手段の一例)と、露光装置30により形成された静電潜像に現像剤に含まれるトナーを付着させて電子写真感光体10の表面にトナー像を形成する現像装置40(現像手段の一例)と、電子写真感光体10に接触しつつ矢印bで示す方向に走行するとともに、電子写真感光体10の表面に形成されたトナー像を転写するベルト状の中間転写体50と、電子写真感光体10の表面をクリーニングするクリーニング装置70(クリーニング手段の一例)とを備える。
【0103】
帯電装置20、露光装置30、現像装置40、中間転写体50、潤滑剤供給装置60及びクリーニング装置70は、電子写真感光体10を囲む円周上に、時計周り方向に配設されている。なお、本実施形態では、クリーニング装置70内部に、潤滑剤供給装置60が配置された形態を説明するが、これに限られるわけではなく、クリーニング装置70とは別途、潤滑剤供給装置60を配置した形態であってもよい。
【0104】
中間転写体50は、内側から、支持ローラ50A、50B、背面ローラ50C、及び駆動ローラ50Dによって張力を付与されつつ保持されるとともに、駆動ローラ50Dの回転に伴い矢印bの方向に駆動される。中間転写体50の内側における電子写真感光体10に相対する位置には、中間転写体50をトナーの帯電極性とは異なる極性に帯電させて中間転写体50の外側の面に電子写真感光体10上のトナーを吸着させる一次転写装置51が設けられている。中間転写体50の下方における外側には、記録紙P(記録媒体の一例)をトナーの帯電極性とは異なる極性に帯電させて、中間転写体50に形成されたトナー像を記録紙P上に転写する二次転写装置52が背面ローラ50Cに対向して設けられている。なお、これら、電子写真感光体10に形成されたトナー像を記録紙Pへ転写するための部材が転写手段の一例に相当する。
【0105】
中間転写体50の下方には、さらに、二次転写装置52に記録紙Pを供給する記録紙供給装置53と、二次転写装置52においてトナー像が形成された記録紙Pを搬送しつつ、トナー像を定着させる定着装置80とが設けられている。
【0106】
記録紙供給装置53は、1対の搬送ローラ53Aと、搬送ローラ53Aで搬送される記録紙Pを二次転写装置52に向かって誘導する誘導スロープ53Bと、を備える。一方、定着装置80は、二次転写装置52によってトナー像が転写された記録紙Pを加熱・押圧することにより、トナー像の定着を行う1対の熱ローラである定着ローラ81と、定着ローラ81に向かって記録紙Pを搬送する搬送コンベア82とを有する。
【0107】
記録紙Pは、記録紙供給装置53と二次転写装置52と定着装置80とにより、矢印cで示す方向に搬送される。
【0108】
中間転写体50には、さらに、二次転写装置52において記録紙Pにトナー像を転写した後に中間転写体50に残ったトナーを除去するクリーニングブレードを有する中間転写体クリーニング装置54が設けられている。
【0109】
以下、本実施形態に係る画像形成装置101における主な構成部材の詳細について説明する。
【0110】
-帯電装置-
帯電装置20としては、例えば、導電性の帯電ローラ、帯電ブラシ、帯電フィルム、帯電ゴムブレード、帯電チューブ等を用いた接触型帯電器が挙げられる。また、帯電装置20としては、例えば、非接触方式のローラ帯電器、コロナ放電を利用したスコロトロン帯電器やコロトロン帯電器等のそれ自体公知の帯電器等も挙げられる。帯電装置20としては、接触型帯電器がよい。
【0111】
-露光装置-
露光装置30としては、例えば、電子写真感光体10表面に、半導体レーザ光、LED光、液晶シャッタ光等の光を、像様に露光する光学系機器等が挙げられる。光源の波長は電子写真感光体10の分光感度領域にあるものがよい。半導体レーザの波長としては、例えば、780nm前後に発振波長を有する近赤外がよい。しかし、この波長に限定されず、600nm台の発振波長レーザや青色レーザとして400nm以上450nm以下に発振波長を有するレーザも利用してもよい。また、露光装置30としては、例えばカラー画像形成のためにはマルチビーム出力するタイプの面発光型のレーザ光源も有効である。
【0112】
-現像装置-
現像装置40は、例えば、現像領域で電子写真感光体10に対向して配置されており、例えば、トナー及びキャリアからなる2成分現像剤を収容する現像容器41(現像装置本体)と、補給用現像剤収納容器(トナーカートリッジ)47と、を有している。現像容器41は、現像容器本体41Aとその上端を塞ぐ現像容器カバー41Bとを有している。
【0113】
現像容器本体41Aは、例えば、その内側に、現像ロール42を収容する現像ロール室42Aを有しており、現像ロール室42Aに隣接して、第1攪拌室43Aと第1攪拌室43Aに隣接する第2攪拌室44Aとを有している。また、現像ロール室42A内には、例えば、現像容器カバー41Bが現像容器本体41Aに装着された時に現像ロール42表面の現像剤の層厚を規制するための層厚規制部材45が設けられている。
【0114】
第1攪拌室43Aと第2攪拌室44Aとの間は例えば仕切り壁41Cにより仕切られており、図示しないが、第1攪拌室43A及び第2攪拌室44Aは仕切り壁41Cの長手方向(現像装置長手方向)両端部に開口部が設けられて通じており、第1攪拌室43A及び第2攪拌室44Aによって循環攪拌室(43A+44A)を構成している。
【0115】
そして、現像ロール室42Aには、電子写真感光体10と対向するように現像ロール42が配置されている。現像ロール42は、図示しないが磁性を有する磁性ロール(固定磁石)の外側にスリーブを設けたものである。第1攪拌室43Aの現像剤は磁性ロールの磁力によって現像ロール42の表面上に吸着されて、現像領域に搬送される。また、現像ロール42はそのロール軸が現像容器本体41Aに回転自由に支持されている。ここで、現像ロール42と電子写真感光体10とは、同方向に回転し、対向部において、現像ロール42の表面上に吸着された現像剤は、電子写真感光体10の進行方向とは逆方向から現像領域に搬送するようにしている。
【0116】
また、現像ロール42のスリーブには、不図示のバイアス電源が接続され、現像バイアスが印加されるようになっている(本実施形態では、現像領域に交番電界が印加されるように、直流成分(AC)に交流成分(DC)を重畳したバイアスを印加)。
【0117】
第1攪拌室43A及び第2攪拌室44Aには現像剤を攪拌しながら搬送する第1攪拌部材43(攪拌・搬送部材)及び第2攪拌部材44(攪拌・搬送部材)が配置されている。第1攪拌部材43は、現像ロール42の軸方向に伸びる第1回転軸と、回転軸の外周に螺旋状に固定された攪拌搬送羽根(突起部)とで構成されている。また、第2攪拌部材44も、同様に、第2回転軸及び攪拌搬送羽根(突起部)とで構成されている。なお、攪拌部材は現像容器本体41Aに回転自由に支持されている。そして、第1攪拌部材43及び第2攪拌部材44は、その回転によって、第1攪拌室43A及び第2攪拌室44Aの中の現像剤は互いに逆方向に搬送されるように配設されている。
【0118】
そして、第2攪拌室44Aの長手方向一端側には、補給用トナー及び補給用キャリアを含む補給用現像剤を第2攪拌室44Aへ供給するための補給搬送路46の一端が連結されており、補給搬送路46の他端には、補給用現像剤を収容している補給用現像剤収納容器47が連結されている。
【0119】
このように現像装置40は、補給用現像剤収納容器(トナーカートリッジ)47から補給搬送路46を経て補給用現像剤を現像装置40(第2攪拌室44A)へ供給する。
【0120】
なお、現像装置40に使用される現像剤は、例えば、トナー単独で含む一成分現像剤、又は、トナーとキャリアを含む二成分系現像剤等の周知の現像剤が採用される。
【0121】
-転写装置-
一次転写装置51、及び二次転写装置52としては、例えば、ベルト、ローラ、フィルム、ゴムブレード等を用いた接触型転写帯電器、コロナ放電を利用したスコロトロン転写帯電器やコロトロン転写帯電器等のそれ自体公知の転写帯電器が挙げられる。
【0122】
中間転写体50としては、導電剤を含んだポリイミド、ポリアミドイミド、ポリカーボネート、ポリアリレート、ポリエステル、ゴム等のベルト状のもの(中間転写ベルト)が使用される。また、中間転写体の形態としては、ベルト状以外に円筒状のものが用いられる。
【0123】
-クリーニング装置-
クリーニング装置70は、筐体71と、筐体71から突出するように配設されるクリーニングブレード72と、クリーニングブレード72の電子写真感光体10回転方向下流側に配置される潤滑剤供給装置60と、を含んで構成されている。
なお、クリーニングブレード72は、筐体71の端部で支持された形態であってもよし、別途、支持部材(ホルダー)により支持される形態であってもよいが、本実施形態では、筐体71の端部で支持された形態を示している。
【0124】
まず、クリーニングブレード72について説明する。
クリーニングブレード72(上記クリーニング層72A及び背面層72B)を構成する材料としては、ウレタンゴム、シリコンゴム、フッ素ゴム、プロピレンゴム、ブタジエンゴム等が挙げられる。これらの中で、ウレタンゴムがよい。
ウレタンゴム(ポリウレタン)は、例えば、通常ポリウレタンの形成に用いられるものであれば特に限定されないが、例えばポリエチレンアジペート、ポリカプロラクトンなどのポリエステルポリオールなどのポリオールとジフェニルメタンジイソシアネートなどのイソシアネートとからなるウレタンプレポリマー及びたとえば1,4-ブタンジオール、トリメチロールプロパン、エチレングリコールやこれらの混合物などの架橋剤を原料とするものよい。
【0125】
次に、潤滑剤供給装置60について説明する。
潤滑剤供給装置60は、例えば、クリーニング装置70の内部であって、クリーニングブレード72よりも電子写真感光体10の回転方向上流側に設けられている。
【0126】
潤滑剤供給装置60としては、例えば、電子写真感光体10と接触して配置される回転ブラシ61と、回転ブラシ61に接触して配置される固形状の潤滑剤62と、で構成されている。潤滑剤供給装置60では、固形状の潤滑剤62と接触した状態で回転ブラシ61を回転させることで、回転ブラシ61に潤滑剤62が付着すると共に、その付着した潤滑剤62が電子写真感光体10の表面に供給され、当該潤滑剤62の皮膜が形成される。
【0127】
なお、潤滑剤供給装置60は、上記形態に限られず、例えば、回転ブラシ61に代わりにゴムローラを採用した形態であってもよい。
【0128】
-画像形成装置の動作-
次に、本実施形態に係る画像形成装置101の動作について説明する。まず、電子写真感光体10が矢印aで示される方向に沿って回転すると同時に、帯電装置20により負に帯電する。
【0129】
帯電装置20によって表面が負に帯電した電子写真感光体10は、露光装置30により露光され、表面に潜像が形成される。
【0130】
電子写真感光体10における潜像の形成された部分が現像装置40に近づくと、現像装置40(現像ロール42)により、潜像にトナーが付着し、トナー像が形成される。
【0131】
トナー像が形成された電子写真感光体10が矢印aに方向にさらに回転すると、トナー像は中間転写体50の外側の面に転写する。
【0132】
トナー像が中間転写体50に転写されたら、記録紙供給装置53により、二次転写装置52に記録紙Pが供給され、中間転写体50に転写されたトナー像が二次転写装置52により、記録紙P上に転写される。これにより、記録紙Pにトナー像が形成される。
【0133】
画像が形成された記録紙Pは、定着装置80でトナー像が定着される。
【0134】
ここで、トナー像が中間転写体50に転写された後、電子写真感光体10は、転写後、潤滑剤供給装置60により潤滑剤62が電子写真感光体10の表面へ供給されて、当該電子写真感光体10の表面に潤滑剤62の皮膜が形成される。その後、クリーニング装置70のクリーニングブレード72により、表面に残ったトナーや放電生成物が除去される。そして、クリーニング装置70において、転写残のトナーや放電生成物が除去された電子写真感光体10は、帯電装置20により、再び帯電せられ、露光装置30において露光されて潜像が形成される。
【0135】
また、本実施形態に係る画像形成装置101は、例えば、図7に示すように、筐体11内に、電子写真感光体10、帯電装置20、現像装置40、潤滑剤供給装置60、及びクリーニング装置70を一体に収容させたプロセスカートリッジ101Aを備えた形態であってもよい。このプロセスカートリッジ101Aは、複数の部材を一体的に収容し、画像形成装置101に脱着させるものである。なお、図7に示す画像形成装置101では、現像装置40には、補給用現像剤収納容器47を設けない形態が示されている。
プロセスカートリッジ101Aの構成は、これに限られず、例えば、少なくとも、電子写真感光体10を備えてえればよく、その他、例えば、帯電装置20、露光装置30、現像装置40、一次転写装置51、潤滑剤供給装置60及びクリーニング装置70から選択される少なくとも一つを備えていてもよい。
【0136】
また、本実施形態に係る画像形成装置101は、上記構成に限られず、例えば、電子写真感光体10の周囲であって、一次転写装置51よりも電子写真感光体10の回転方向下流側でクリーニング装置70よりも電子写真感光体の回転方向上流側に、残留したトナーの極性を揃え、クリーニングブラシで除去しやすくするための第1除電装置を設けた形態であってもよいし、クリーニング装置70よりも電子写真感光体の回転方向下流側で帯電装置20よりも電子写真感光体の回転方向上流側に、電子写真感光体10の表面を除電する第2除電装置を設けた形態であってもよい。
【0137】
また、本実施形態に係る画像形成装置101は、上記構成に限れず、周知の構成、例えば、電子写真感光体10に形成したトナー像を直接、記録紙Pに転写する方式を採用してもよいし、タンデム方式の画像形成装置を採用してもよい。
【実施例】
【0138】
以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらの実施例に制限されるものではない。なお、以下の実施例において「部」は質量部を意味する。
【0139】
[シリカ粒子の準備・作製]
-シリカ粒子(0)-
未処理(親水性)シリカ粒子「商品名:OX50(製造元 アエロジル社製)」を準備し、これをシリカ粒子(0)とした。
【0140】
-シリカ粒子(11)-
未処理(親水性)シリカ粒子「商品名:OX50(製造元 アエロジル社製)」100質量部に、疎水化処理剤としてトリメトキシシラン(「商品名:1,1,1,3,3,3-ヘキサメチルジシラザン(製造元 東京化成社製)」)30質量部を添加し、24時間反応させ、その後、濾取し疎水化処理されたシリカ粒子を得た。これをシリカ粒子(11)とした。
【0141】
-シリカ粒子(12)-
疎水化処理シリカ粒子「商品名:RX200(製造元 アエロジル社製)」を準備し、これをシリカ粒子(12)とした。
【0142】
-シリカ粒子(13)-
疎水化処理シリカ粒子「商品名:X24-9163A(製造元 信越化学工業社製)」を準備し、これをシリカ粒子(13)とした。
【0143】
-シリカ粒子(14)-
未処理(親水性)シリカ粒子「商品名:OX50(製造元アエロジル社製)」100質量部に、テトラヒドロフラン200質量部、疎水化処理剤としてトリメチルシラン(1,1,1,3,3,3-ヘキサメチルジシラザン(製造元東京化成社製)」)30質量部を添加し、12時間反応させ、その後、濾取し疎水化処理されたシリカ粒子を得た。これをシリカ粒子(14)とした。
【0144】
-シリカ粒子(15)-
未処理(親水性)シリカ粒子「商品名:SFP-20M(製造元 電気化学工業社製)」100質量部に、テトラヒドロフラン200質量部、疎水化処理剤としてトリメチルシラン(1,1,1,3,3,3-ヘキサメチルジシラザン(製造元 東京化成社製)」)30質量部を添加し、12時間反応させ、その後、濾取し疎水化処理されたシリカ粒子を得た。これをシリカ粒子(15)とした。
【0145】
-シリカ粒子(21)-
未処理(親水性)シリカ粒子「商品名:OX50(製造元アエロジル社製)」100質量部に、テトラヒドロフラン200質量部、疎水化処理剤としてデシルシラン(デシルトリメトキシシラン「商品名:KBM-3103(製造元信越化学工業社製)」)30質量部を添加し、24時間反応させ、その後、濾取し疎水化処理されたシリカ粒子を得た。これをシリカ粒子(21)とした。
【0146】
-シリカ粒子(31)-
未処理(親水性)シリカ粒子「商品名:OX50(製造元 アエロジル社製)」100質量部に、テトラヒドロフラン200質量部、疎水化処理剤としてフェニルシラン(フェニルトリエトキシシラン「商品名:KBE-103(製造元信越化学工業社製)」)30質量部を添加し、24時間反応させ、疎水化処理されたシリカ粒子を得た。これをシリカ粒子(31)とした。
【0147】
[実施例A]
(実施例A1)
-下引層の作製-
酸化亜鉛:(平均粒子径70nm:テイカ社製:比表面積値15m^(2)/g)100質量部をテトラヒドロフラン500質量部と攪拌混合し、シランカップリング剤(KBM503:信越化学社製)1.3質量部を添加し、2時間攪拌した。その後テトラヒドロフランを減圧蒸留にて留去し、120℃で3時間焼き付けを行い、シランカップリング剤表面処理酸化亜鉛を得た。
前記表面処理を施した酸化亜鉛110質量部を500質量部のテトラヒドロフランと攪拌混合し、アリザリン0.6質量部を50質量部のテトラヒドロフランに溶解させた溶液を添加し、50℃にて5時間攪拌した。その後、減圧ろ過にてアリザリンを付与させた酸化亜鉛をろ別し、さらに60℃で減圧乾燥を行いアリザリン付与酸化亜鉛を得た。
このアリザリン付与酸化亜鉛60質量部と硬化剤(ブロック化イソシアネート スミジュール3175、住友バイエルンウレタン社製):13.5質量部とブチラール樹脂(エスレックBM-1、積水化学社製)15質量部をメチルエチルケトン85質量部に溶解した溶液38質量部とメチルエチルケトン :25質量部とを混合し、1mmφのガラスビーズを用いてサンドミルにて2時間の分散を行い分散液を得た。
得られた分散液に触媒としてジオクチルスズジラウレート:0.005質量部、シリコーン樹脂粒子(トスパール145、GE東芝シリコーン社製):40質量部を添加し、下引層塗布用液を得た。この塗布液を浸漬塗布法にて直径60mm、長さ357mm、肉厚1mmのアルミニウム基材上に塗布し、170℃、40分の乾燥硬化を行い厚さ19μmの下引層を得た。
【0148】
-電荷発生層の作製-
電荷発生物質としてのCukα特性X線を用いたX線回折スペクトルのブラッグ角度(2θ±0.2°)が少なくとも7.3゜,16.0゜,24.9゜,28.0゜の位置に回折ピークを有するヒドロキシガリウムフタロシアニン15質量部、結着樹脂としての塩化ビニル・酢酸ビニル共重合体樹脂(VMCH、日本ユニカー社製)10質量部、n-酢酸ブチル200質量部からなる混合物を、直径1mmφのガラスビーズを用いてサンドミルにて4時間分散した。得られた分散液にn-酢酸ブチル175質量部、メチルエチルケトン180質量部を添加し、攪拌して電荷発生層用の塗布液を得た。この電荷発生層用塗布液を下引層上に浸漬塗布し、常温(25℃)で乾燥して、膜厚が0.2μmの電荷発生層を形成した。
【0149】
-電荷輸送層の作製-
シリカ粒子(11)20質量部にテトラヒドロフラン95質量部を入れ、20℃の液温に保ちながら(N,N’-ジフェニル-N,N’-ビス(3-メチルフェニル)-(1,1’-ジフェニル)-4,4’-ジアミン10質量部、結着樹脂としてビスフェノールZ型ポリカーボネート樹脂(粘度平均分子量:50,000) 10質量部、加え12時間攪拌混合し、電荷輸送層形成用塗布液を得た。
【0150】
この電荷輸送層形成用塗布液を電荷発生層上に塗布して135℃で40分間乾燥し、膜厚が30μmの電荷輸送層を形成し、目的の電子写真感光体を得た。
【0151】
以上の工程を経て、アルミニウム基材上に、下引層と電荷発生層と電荷輸送層とをこの順に積層形成した有機感光体(以下、「ノンコート感光体(1)」と称する)を得た。
【0152】
-無機保護層の形成-
次に、ノンコート感光体(1)の表面へ、水素を含む酸化ガリウムで構成された無機保護層を形成した。この無機保護層の形成は、図4に示す構成を有する成膜装置を用いて行った。
【0153】
まず、ノンコート感光体(1)を、成膜装置の成膜室210内の基体支持部材213に載せ、排気口211を介して成膜室210内を、圧力が0.1Paになるまで真空排気した。なお、この真空排気は、上記高濃度酸素含有気体の置換終了後、5分以内に行った。
次に、He希釈40%酸素ガス(流量1.6sccm)、及び水素ガス(流量50sccm)を、ガス導入管220から直径85mmの平板電極219が設けられた高周波放電管部221内に導入し、高周波電力供給部218及びマッチング回路(図4中不図示)により、13.56MHzのラジオ波を出力150Wにセットしチューナでマッチングを取り平板電極219から放電を行った。この時の反射波は0Wであった。
次に、トリメチルガリウムガス(流量1.9sccm)を、ガス導入管215を介してシャワーノズル216から成膜室210内のプラズマ拡散部217に導入した。この時、バラトロン真空計で測定した成膜室210内の反応圧力は5.3Paであった。
この状態で、ノンコート感光体(1)を500rpmの速度で回転させながら68分間成膜し、ノンコート感光体(1)の電荷輸送層表面に膜厚0.25μmの無機保護層を形成した。
【0154】
以上の工程を経て、導電性基体上に、下引層、電荷発生層、電荷輸送層、無機保護層が順次形成された電子写真感光体を得た。
【0155】
(実施例A2?A8、比較例A1)
表2に従って、電荷輸送層の組成・膜厚を変更した以外は、実施例A1と同様にして、電子写真感光体を得た。
【0156】
(評価A)
-特性評価A-
各例で得られた電子写真感光体について、既述の方法に従って、電荷輸送層の弾性率について調べた。
【0157】
その他、各例で得られた電子写真感光体を目視により塗布性を下記のように評価した
A:膜はがれなく、シリカ粒子の析出なく塗布できた。
B:膜はがれはないが、シリカ粒子の析出(表面の白濁)が確認された
C:膜はがれが発生した
【0158】
-実機評価A-
各例で得られた電子写真感光体を富士ゼロックス社製700 Digital Color Pressに取り付けて、高温高湿環境(20℃、40%RH)下で、ハーフトーン画像(画像濃度30%)を連続出力するプリントテストを行い、無機保護層の打痕、感光体の電気特性について評価を行った。
【0159】
・無機保護層の打痕評価
ハーフトーン画像(画像濃度30%)を連続100枚出力した後、電子写真感光の表面(無機保護層の表面)をレーザー顕微鏡により、倍率450倍で10視野測定し、打痕状の凹み部の数をカウントし、単位面積(1mm×1mm)当たりの打痕の数を算出した。
評価基準は以下の通りである。
A:打痕数が20個以下
B:打痕数が20個超え100個以下
C:打痕数が100個超え
【0160】
・電気特性
電気写真感光体の電気特性についてスキャナ測定で評価した。具体的には、以下の通りである。
【0161】
1.残留電位(RP)
まず、電子写真感光体に対して、露光用の光(光源:半導体レーザー、波長:780nm、出力:5mW)を、スコロトロン帯電器により-700Vに帯電させた状態で167rpmで回転させている電子写真感光体の表面に走査しながら照射した。その後、電子写真感光体の電位を表面電位計(モデル344、トレックジャパン社製)により測定し、電子写真感光体における電位状態(残留電位)を調べた。これを100サイクル繰り返し、100回目の残留電位を測定した。
評価基準は以下の通りである。
A:残留電位(RP)が100V以下
B:残留電位(RP)が100V超え150V以下
C:残留電位(RP)が150V超え
【0162】
[実施例B]
(実施例B1?B5、比較例B1?B2)
表3に従って、電荷輸送層の組成・膜厚を変更した以外は、実施例A1と同様にして、電子写真感光体を得た。
但し、各例では、成膜時間を変更し、無機保護層の膜厚を1μmとした。
【0163】
(評価B)
各例で得られた電子写真感光体について、実施例Aと同様にして、無機保護層の打痕、感光体の電気特性について評価を行った。
なお、比較例B2に対しての塗布性の評価に関してはシリカ粒子の析出ではなく電荷輸送材料の析出による白濁について調べた。
【0164】
[実施例C]
(実施例C1?C3、比較例C1)
表4に従って、電荷輸送層の組成・膜厚を変更した以外は、実施例A1と同様にして、電子写真感光体を20本作製し、その中から電荷輸送層の表面粗さRaの高いもの、2番目に高いもの、平均値のものの3本を選び、実施例C1?C3の電子写真感光体として評価した。
同様に、表4に従って、電荷輸送層の組成・膜厚を変更した以外は、実施例A1と同様にして、電子写真感光体を作製し、比較例C1の電子写真感光体として評価した。
【0165】
(評価C)
各例で得られた電子写真感光体について、実施例Aと同様にして、塗布性、無機保護層の打痕、感光体の電気特性について評価を行った。加えて、クリーニング性についても評価した。
【0166】
・クリーニング性評価
各例で得られた電子写真感光体を富士ゼロックス社製700 Digital Color Pressに取り付けて、高温高湿環境(28℃、80%RH)下で、ハーフトーン画像(画像濃度30%)を連続2万枚出力した後、高温高湿環境(28℃、80%RH)下で1晩放置した。その後、ハーフトーン画像(画像濃度30%)を連続100枚出力し、その100枚目の画像について目視にて評価した。
評価基準は以下の通りである。
A:放置前の出力画像と比較して同様な画像が出力されている
B:放置前の出力画像と比較して画像領域の50%以下の画像濃度が低下している
C:放置前の出力画像と比較して画像領域全体の画像濃度が低下している
【0167】
[実施例D]
(実施例D1?D4)
表5に従って、電荷輸送層の組成・膜厚を変更した以外は、実施例A1と同様にして、電子写真感光体を得た。
【0168】
(評価D)
各例で得られた電子写真感光体について、実施例Aと同様にして、塗布性、無機保護層の打痕、感光体の電気特性について評価を行った。加えて、細線再現性(解像度)について評価した。
【0169】
・解像度評価
各例で得られた電子写真感光体を富士ゼロックス社製700 Digital Color Pressに取り付けて、高温高湿環境(20℃、40%RH)下で、5 line pair/mm画像を出力し、画像を光学顕微鏡 50倍を用いた観察で評価した。
評価基準は以下の通りである。
A:放置前の出力画像と比較して同様な画像(line pair)が出力されている
B:放置前の出力画像と比較して画像(line pair)が直線性の低下、一部つながる
C:放置前の出力画像と比較して画像(line pair)が明確ではない
【0170】
[実施例E]
(実施例E1?E4)
表6に従って、電荷輸送層の組成・膜厚を変更した以外は、実施例A1と同様にして、電子写真感光体を得た。
【0171】
(評価E)
各例で得られた電子写真感光体について、実施例Aと同様にして、塗布性、無機保護層の打痕、感光体の電気特性について評価を行った。
【0172】
[実施例F]
(実施例F1?F2)
表6に従って、電荷輸送層の組成・膜厚を変更した以外は、実施例A1と同様にして、電子写真感光体を得た。
【0173】
(評価F)
各例で得られた電子写真感光体について、実施例Aと同様にして、塗布性、無機保護層の打痕、感光体の電気特性について評価を行った。
【0174】
[実施例G]
(実施例G1?G4)
表7に従って、電荷輸送層の組成・膜厚を変更した以外は、実施例A1と同様にして、電子写真感光体を得た。
【0175】
(評価G)
各例で得られた電子写真感光体について、実施例Aと同様にして、塗布性、無機保護層の打痕、感光体の電気特性について評価を行った。加えて、実施例Dと同様にして、細線再現性(解像度)について評価した。
【0176】
以下、表2?表7に、各実施例の詳細と共に、評価結果の一覧を示す。
但し、表中の略記は以下の通りである。
・D50:体積平均粒径
・TMS:トリメチルシラン
・DS:デシルシラン
・FS:フェニルシラン
・シリカ粒子の縮合率;シリカ粒子の表面のシラノール基に対する疎水化処理剤の縮合率
・シリカ粒子の濃度:電荷輸送層全体に対するシリカ粒子の含有量
・電荷輸送材料の濃度:電荷輸送層の全成分の質量からシリカ粒子の質量を引いた質量する電荷輸送材料の含有量(電荷輸送材料の濃度=電荷輸送材料質量/(電荷輸送層全質量-シリカ粒子質量))
【0177】
以下、既述の方法に従って測定した各シリカ粒子の特性を、表1に一覧にして示すと共に、各例の詳細、及び評価結果について、表2?表7に一覧にして示す。
【0178】
【表1】

【0179】
【表2】

【0180】
【表3】

【0181】
【表4】

【0182】
【表5】

【0183】
【表6】

【0184】
【表7】

【0185】
上記結果から、本実施例では、比較例に比べ、無機保護層の打痕、電気特性が良好であることがわかる。
【符号の説明】
【0186】
210 成膜室、211 排気口、212 基体回転部、213 基体支持部材、214 基体、215、220 ガス導入管、216 シャワーノズル、217 プラズマ拡散部、218 高周波電力供給部、219 平板電極、221 高周波放電管部、222 高周波コイル、223 石英管、10 電子写真感光体、10A 電子写真感光体、10B 電子写真感光体、20 帯電装置、30 露光装置、40 現像装置、41 現像容器、41A 現像容器本体、41B 現像容器カバー、41C 壁、42 現像ロール、42A 現像ロール室、43 攪拌部材、43A 攪拌室、44 攪拌部材、44A 攪拌室、45 層厚規制部材、46 補給搬送路、47 補給用現像剤収納容器、50 中間転写体、50A 支持ローラ、50B 支持ローラ、50C 背面ローラ、50D 駆動ローラ、51 一次転写装置、52 二次転写装置、53 記録紙供給装置、53A 搬送ローラ、53B 誘導スロープ、54 中間転写体クリーニング装置、70 クリーニング装置、71 筐体、72 クリーニングブレード、80 定着装置、81 定着ローラ、82 搬送コンベア、101 画像形成装置、101A プロセスカートリッジ
(57)【特許請求の範囲】
【請求項1】
体積平均粒径が20nm以上200nm以下であり、縮合率が90%以上である燃焼法シリカ粒子の疎水化処理シリカ粒子。
【請求項2】(削除)
【請求項3】
前記疎水化処理シリカ粒子が、シリカ粒子の表面にトリメチルシリル基、デシルシリル基、又はフェニルシリル基を持つシラン化合物である請求項1に記載の燃焼法シリカ粒子の疎水化処理シリカ粒子。
 
訂正の要旨 審決(決定)の【理由】欄参照。
異議決定日 2020-08-04 
出願番号 特願2016-161973(P2016-161973)
審決分類 P 1 651・ 851- ZAA (G03G)
P 1 651・ 537- ZAA (G03G)
P 1 651・ 853- ZAA (G03G)
最終処分 取消  
前審関与審査官 浅野 昭増山 淳子  
特許庁審判長 日比野 隆治
特許庁審判官 後藤 政博
宮澤 尚之
登録日 2018-10-05 
登録番号 特許第6409833号(P6409833)
権利者 富士ゼロックス株式会社
発明の名称 疎水化処理シリカ粒子  
代理人 特許業務法人太陽国際特許事務所  
代理人 特許業務法人太陽国際特許事務所  
  • この表をプリントする

プライバシーポリシー   セキュリティーポリシー   運営会社概要   サービスに関しての問い合わせ