• ポートフォリオ機能


ポートフォリオを新規に作成して保存
既存のポートフォリオに追加保存

  • この表をプリントする
PDF PDFをダウンロード
審決分類 審判 全部申し立て 2項進歩性  A01K
管理番号 1403612
総通号数 23 
発行国 JP 
公報種別 特許決定公報 
発行日 2023-11-24 
種別 異議の決定 
異議申立日 2022-02-14 
確定日 2023-07-26 
異議申立件数
訂正明細書 true 
事件の表示 特許第6923232号発明「遺伝子改変家禽卵」の特許異議申立事件について、次のとおり決定する。 
結論 特許第6923232号の明細書及び特許請求の範囲を訂正請求書に添付された訂正明細書及び訂正特許請求の範囲のとおり、訂正後の請求項〔1−4〕について訂正することを認める。 特許第6923232号の請求項2ないし4に係る特許を取り消す。 特許第6923232号の請求項1に係る特許についての特許異議の申立てを却下する。 
理由 第1 手続の経緯及び証拠方法
1 手続の経緯
特許第6923232号(以下「本件特許」という。)の請求項1〜4に係る特許についての出願は、平成28年12月22日(優先権主張 平成27年12月25日)を国際出願日とする特許出願(特願2017−558320号)の一部を令和2年2月28日に新たな特許出願(特願2020−33109号)としたものであって、令和3年8月2日にその特許権の設定登録がされ、令和3年8月18日に特許掲載公報が発行された。その後、本件特許に対して2件の特許異議の申立てがあり、次のとおりに手続が行われた。
令和4年2月14日 : 特許異議申立人である松本文彦(以下、「申立人A」という。)による特許異議の申立て
令和4年2月17日 : 特許異議申立人である野口操(以下、「申立人B」という。)による特許異議の申立て
令和4年5月26日付け : 取消理由通知書、審尋(特許権者)
令和4年7月14日 : 面接(特許権者)
令和4年7月27日 : 意見書、審尋回答書(特許権者)
令和4年8月12日 : 上申書(特許権者)
令和4年8月31日付け : 審尋(申立人A、B)
令和4年10月4日 : 審尋回答書(申立人A)
令和4年12月13日付け: 取消理由通知書(決定の予告)
令和5年2月16日 : 訂正請求書、意見書(特許権者)
令和5年2月28日付け : 訂正請求があった旨の通知(申立人A、B)
なお、指定した期間内に申立人A、Bより、訂正請求があった旨の通知に対する意見書の提出はなされなかった。

2 証拠方法
申立人Aが、異議申立書に添付した証拠方法は、以下のとおりである。
甲第1号証:鶏の研究,2013.08.01,Vol.88, No.8、p.25-26
甲第2号証:Proc.Natl.Acad.Sci.USA, 2014, Vol.111, p.12716-12721
甲第3号証:Chicken Gene Nomenclature Consortium, “CGNC ID 50205”, 10 February 2012, [online]. The Biotechnology Computing Facility at the University of Arizona,[令和4年1月21日検索]
甲第4号証:Tracy Tang et al.,“A mouse knockout library for secreted and transmembrane proteins, 20 June 2010, [online]. Springer Nature Limited, [令和4年1月21日検索]
甲第5号証:Tracy Tang et al.,“A mouse knockout library for secreted and transmembrane proteins, 7 July 2010,[online]. Springer Nature Limited, [令和4年1月21日検索]
甲第6号証:Tracy Tang et al.,“A mouse knockout library for secreted and transmembrane proteins", 20 June 2010, [online]. Springer Nature Limited, [令和4年1月21日検索]
甲第7号証:特願2020−033109号(本件特許) 令和3年6月14日付け (提出日)意見書
(以下、上記の甲第1号証〜甲第7号証を、「甲A−1」〜「甲A−7」という。)

申立人Aが、令和4年10月4日付け審尋回答書に添付した証拠方法は、以下のとおりである。
参考資料1:https://kaken.nii.ac.jp/ja/grant/KAKENHI-PROJECT-13470174/

申立人Bが、異議申立書に添付した証拠方法は、以下のとおりである。
甲第1号証:堀内 浩幸, 第1回 タマゴシンポジウム テーマ:『タマゴが創る未来の食生活』「鳥類多能性幹細胞を用いた鶏卵の低アレルゲン化」, タマゴ科学研究会, 2013年5月20日
甲第2号証:BMB2015 (第38回日本分子生物学会年会, 第88回日本生化学会大会合同大会)合同年次大会プログラム 「[4T12L-04(3P0828)] 始原生殖細胞を用いたニワトリゲノム編集」,2015年12月4日,[online], BMB2015 (第38回日本分子生物学会年会, 第88回日本生化学会大会合同大会)大会事務局[令和4年1月28日検索]URL:https://confit.atlas.jp/guide/organizer/bmb/bmb2015/subject/4T12L-04/search?searchType=only&initFlg=false&query=3P0828&title=&author=&affi1iation=
(以下、上記の甲第1号証〜甲第2号証を、「甲B−1」〜「甲B−2」という。)

特許権者が令和4年7月27日付け意見書に添付した証拠方法は、以下のとおりである。
乙第1号証:特許権者が作成した本件発明1についての説明図
乙第2号証:Tae Sub Park et al., Proc Natl Acad Sci USA 111(35): 12716-12721, September 2, 2014
乙第3号証:都築ら,日本家禽学会誌,46:J23-J29, 2009
乙第4号証:Jacqueline K. White et al., Cell 154, 452-464, July 18, 2013
乙第5号証:Nicholas A. Salmon et al., Genetics. 2006 November; 44(11):515-522
乙第6号証:https://www.ncbi.nlm.nih.gov/gene?Db=gene&Cmd=DetailsSearch&Term=416236
乙第7号証:https://www.ncbi.nlm.nih.gov/homologene/4987
乙第8号証:Tao Yang, Dongcai Liang, Peter J. Koch, et al., GENES & DEVELOPMENT 2004, 18:2354-2358
乙第9号証:Ning Qiu et al., Journal of Proteomics 75 (2012) 1895-1905
乙第10号証:五訂日本食品標準成分表,文部科学省科学技術・学術審議会資源調査分科会,2000年
乙第11号証:東海大学農学部バイオサイエンス学科タンパク質化学研究室のホームページ中「卵白タンパク質の科学」の部分
乙第12号証:Winiarska-Mieczan A et al., Postepy Biochemii, 01 Jan 2007, 53(3):212-217の英文要約
乙第13号証:Yijun Liu et al., Poultry Science 94: 2495-2505, Sep 2015
乙第14号証:E. D. N. S. Abeyrathne et al., 2015 Poultry Science 94:2280-2287
乙第15号証:E. Willems et al., World's Poultry Science Journal, Vol. 70, 503-517 September 2014
乙第16号証:たまご博物館 生物学コーナー(http://takakis.la.coocan.jp/seibutu.htm)
乙第17号証:たまご博物館 鶏の生殖器(http://takakis.la.coocan.jp/hu_yoshimura.htm)
乙第18号証:KAKEN−研究課題をさがす;1991年度実績報告書(KAKENHI-PROJECT-03660085)「糖タンパク質溶液の粘性挙動における糖鎖部分の意義」
乙第19号証:Takehiro Mukae et al., 2121 Poultry Science 100:452-460
(以下、上記乙第1号証〜乙第19号証を、「乙1」〜「乙19」という。)

また、特許権者が令和4年7月27日付け審尋回答書に添付した証拠方法は、以下のとおりである。
乙第20号証:2015年12月4日に第38回日本分子生物学会、第88回日本生化学会大会 合同大会 第12会場(神戸ポートピアホテル 南館B1F ダイヤモンド)において12:15頃より開催された、演題番号4T12L−04(3P0828)「始原生殖細胞を用いたニワトリゲノム編集」なる学術講演に用いられたスライド
(以下、上記乙第20号証を、「乙20」という。)

また、特許権者が令和5年2月17日付け意見書に添付した証拠方法は、以下のとおりである。
乙第21号証:Takehiro Mukae et al., 2021 Poultry Science 100: 452-460 (Supplementary Material含む)
(以下、上記乙第21号証を、「乙21」という。)

第2 訂正の適否
1 訂正の内容
令和5年2月16日付けの訂正請求書の訂正請求(以下、「本件訂正請求」という。)による訂正の内容は、次のとおりである。
(1)訂正事項1
特許請求の範囲の請求項2に「請求項1に記載のノックアウト家禽の卵」と記載されているのを、「オボムコイド遺伝子がホモノックアウトされているノックアウト家禽の卵」に訂正する。
(2)訂正事項2
特許請求の範囲の請求項2に「配列番号6(OVMTg2)に示される塩基配列に相当する領域およびその近傍領域に塩基の欠失、置換、または挿入を有している」と記載されているのを、「配列番号6(OVMTg2)に示される塩基配列中のtacagを含む領域の欠失を有している」に訂正する。
(3)訂正事項3
特許請求の範囲の請求項1を削除する。
(4)訂正事項4
特許請求の範囲の請求項3に「請求項1または2に記載のノックアウト家禽の卵」と記載されているのを、「請求項2に記載のノックアウト家禽の卵」に訂正する。
(5)訂正事項5
特許請求の範囲の請求項4に「請求項1〜3のいずれか一項に記載のノックアウト家禽の卵」と記載されているのを、「請求項2または3に記載のノックアウト家禽の卵」に訂正する。
(6)訂正事項6
明細書段落【0044】に「オボアルブミンヘテロノックアウト」と記載されているのを、「オボムコイドヘテロノックアウト」に訂正する。

2 一群の請求項について
訂正前の請求項2〜4は、訂正前の請求項1を直接又は間接的に引用する関係にあるから、訂正前の請求項1〜4は、特許法第120条の5第4項に規定する一群の請求項に該当するものである。

3 訂正の目的の適否、新規事項の有無、及び特許請求の範囲の拡張・変更の存否
(1)訂正事項1
訂正事項1は、訂正前の請求項2が訂正前の請求項1を引用する記載であったものを、請求項間の引用関係を解消し、独立形式請求項へ改めるための訂正であるから、特許法第120条の5第2項ただし書第4号に規定する「他の請求項の記載を引用する請求項の記載を当該他の請求項の記載を引用しないものとすること」を目的とするものである。
また、訂正事項1は、上記のとおりの訂正であるので、新規事項の追加に該当せず、実質上特許請求の範囲を拡張し、又は変更するものともいえない。
(2)訂正事項2
訂正前の請求項2では、変異として、「配列番号6(OVMTg2)に示される塩基配列に相当する領域およびその近傍領域」に「塩基の欠失、置換、または挿入を有している」ことを特定していたところ、訂正事項2により、変異の位置が「配列番号6(OVMTg2)に示される塩基配列中」に限定され、変異の種類が「tacagを含む領域の欠失を有している」ものに限定された。
よって、訂正事項2は、特許法第120条の5第2項ただし書第1号に規定する「特許請求の範囲の減縮」を目的とするものであり、実質上特許請求の範囲を拡張し、又は変更するものともいえない。
また、本件特許の設定登録時の願書に添付した明細書(以下、「本件明細書」という。)の段落【0044】には、「オボムコイド遺伝子変異の一例を図4B上段に示す。この個体ではオボムコイドタンパク質のシグナルペプチド直下部より変異を起こす5塩基の欠損が認められ、片アレルにオボムコイド遺伝子のフレームシフト変異を有している。また、オボムコイドゲノムの標的領域を中心に認められる代表的な変異(遺伝子欠損)の例を図4B下段に示した。ここに代表されるようなオボムコイドタンパク質のシグナルペプチド直下部よりフレームシフト変異を生じるオボアルブミンヘテロノックアウトの雌雄個体を複数得ており、これら個体を性成熟後交配することでオボムコイドのホモノックアウトニワトリ作出が可能である。」と記載されており、図4B上段には、オボムコイド遺伝子のOVMTg2の領域において、tacagを欠失する配列が記載され、下段には、当該欠失を含む配列も記載されている。
よって、訂正事項2は、願書に添付した明細書、特許請求の範囲又は図面に記載した事項の範囲内の訂正であり、特許法第120条の5第9項で準用する特許法第126条第5項に適合する。
(3)訂正事項3
訂正事項3は、請求項1を削除するというものであるから、特許法第120条の5第2項ただし書第1号に規定する「特許請求の範囲の減縮」を目的とするものであり、新規事項の追加に該当せず、実質上特許請求の範囲を拡張し、又は変更するものともいえない。
(4)訂正事項4
訂正事項4は、訂正前の請求項3が請求項1または2の記載を引用する記載であったところ、訂正事項3で請求項1が削除されて請求項1を引用できなくなったことに伴い、引用する請求項を減少させるものであるから、特許法第120条の5第2項ただし書第1号に規定する「特許請求の範囲の減縮」を目的とするものである。
また、訂正事項4は、新規事項の追加に該当せず、実質上特許請求の範囲を拡張し、又は変更するものともいえない。
(5)訂正事項5
訂正事項5は、訂正前の請求項4が請求項1〜3の記載を引用する記載であるところ、訂正事項3で請求項1が削除されて請求項1を引用できなくなったことに伴い、引用する請求項を減少させるものであるから、特許法第120条の5第2項ただし書第1号に規定する「特許請求の範囲の減縮」を目的とするものである。
また、訂正事項5は、新規事項の追加に該当せず、実質上特許請求の範囲を拡張し、又は変更するものともいえない。
(6)訂正事項6
本件明細書の段落【0044】には、以下の記載がある(下線は、当審にて付与した。)。
「孵卵2.5日後、卵の突端側に直径2cm程度の窓を開けて胚を露呈し、ハンバーガーハミルトンステージ13から15までのレシピエント胚血液中に約1000〜5000個の薬剤選択済み細胞(1〜2μlのPBSに懸濁)を微小ガラス針を用いて移植した。窓をセロハンテープで密閉後、温度38.5℃、湿度60〜80%で培養し孵化させた(キメラヒヨコ(G0))。8羽の雄キメラヒヨコを性成熟させ、精液を採取した。精液よりゲノムDNAを抽出後、配列番号11,配列番号12で示されるオリゴDNAプライマーを用いたPCR法によりオボムコイド遺伝子の一部領域を増幅し、TAベクターにサブクローンし、配列番号6(OVMTg2)を含む領域のゲノム塩基配列を解析した。高頻度に変異の見られたキメラニワトリ#372,#376(いずれもサブクローンした11クローン中10クローンにオボムコイド遺伝子の変異が見られた)を野生型の横斑プリマスロック種雌と交配させ、それぞれの後代19羽中に11羽、14羽中に6羽のオボムコイド変異ニワトリ(ヒヨコ)を見出した。オボムコイド遺伝子変異の一例を図4B上段に示す。この個体ではオボムコイドタンパク質のシグナルペプチド直下部より変異を起こす5塩基の欠損が認められ、片アレルにオボムコイド遺伝子のフレームシフト変異を有している。また、オボムコイドゲノムの標的領域を中心に認められる代表的な変異(遺伝子欠損)の例を図4B下段に示した。ここに代表されるようなオボムコイドタンパク質のシグナルペプチド直下部よりフレームシフト変異を生じるオボアルブミンヘテロノックアウトの雌雄個体を複数得ており、これら個体を性成熟後交配することでオボムコイドのホモノックアウトニワトリ作出が可能である。」
上記の段落【0044】の記載によると、オボムコイドホモノックアウトニワトリの作出に使用されるヘテロノックアウトが「オボアルブミンヘテロノックアウト」ではなく「オボムコイドヘテロノックアウト」であることが明らかなので、訂正事項6は、特許法第120条の5第2項ただし書第2号に規定する「誤記の訂正」を目的とするものであり、実質上特許請求の範囲を拡張し、又は変更するものともいえない。
また、本件明細書の段落【0044】に上記のとおりの記載があることから、訂正事項6は、願書に最初に添付した明細書に記載した事項の範囲内のものと認められる。

4 独立特許要件
本件特許異議の申立ては、訂正前の全ての請求項に対してなされているので、訂正を認める要件として、特許法第120条の5第9項において読み替えて準用する同法第126条第7項に規定する独立特許要件は課されない。

5 小括
以上のとおり、本件訂正請求による訂正事項1〜6は、特許法第120条の5第2項ただし書第1号〜第4号のいずれかに掲げる事項を目的とするものであり、いずれも同法同条第9項で準用する同法第126条第5項及び第6項の規定に適合している。
したがって、本件特許の明細書及び特許請求の範囲を、訂正請求書に添付された訂正明細書及び訂正特許請求の範囲のとおり、訂正後の請求項〔1−4〕について訂正することを認める。

第3 本件発明
上記第2のとおり、本件訂正は認容されるので、本件訂正請求により訂正された訂正後の請求項1〜4に係る発明(以下、「本件発明1」〜「本件発明4」という。また、これらを総称して「本件発明」ということがある。)は、その特許請求の範囲の請求項1〜4に記載された、以下の事項によって特定されるとおりのものである。なお、下線は訂正箇所である。

「【請求項1】(削除)
【請求項2】
オボムコイド遺伝子がホモノックアウトされているノックアウト家禽の卵であって、
オボムコイドをコードする塩基配列において、配列番号6(OVMTg2)に示される塩基配列中のtacagを含む領域の欠失を有している、ノックアウト家禽の卵。
【請求項3】
請求項2に記載のノックアウト家禽の卵であって、
内在性のオボムコイドを実質的に含まない、ノックアウト家禽の卵。
【請求項4】
請求項2または3に記載のノックアウト家禽の卵由来のノックアウト家禽。」

第4 取消理由(決定の予告)の概要
訂正前の請求項1〜4に係る特許に対して、当審が令和4年12月13日付けの取消理由通知(決定の予告)において特許権者に通知した取消理由の要旨は、次のとおりである。

訂正前の請求項1〜4に係る発明は、乙20により公然知られた発明に基づいて、当業者が容易に発明をすることができたものであって、特許法第29条第2項の規定により特許を受けることができないものであるから、それらの発明に係る特許は、同法第113条第2号に該当し、取り消すべきものである。

第5 当審合議体の判断
審尋回答書に記載されているとおり、乙20は、本件特許の発明者らによる学術講演の発表で用いられたスライドであり、甲B−2に、その学術講演の開催日及び講演要旨が記載されていることに照らすと、本件特許の優先日(平成27年12月25日)より前の2015年12月4日に当業者に公然知られた内容を明らかにするものであると認められる。
そして、本件発明2〜4は、乙20により公然知られた発明に基づいて、当業者が容易に発明をすることができたものであって、特許法第29条第2項の規定により特許を受けることができないものであるから、それらの発明に係る特許は、同法第113条第2号に該当し、取り消すべきものである。
その理由は以下のとおりである。

1 乙20に記載された事項及び乙20により公然知られた発明
(1)乙20に記載された事項
乙20には、以下の事項が記載されている。

ア 「

」(スライド2枚目)
イ 「


」(スライド9枚目)
ウ 「

」(スライド13枚目)
エ 「

」(スライド14枚目)
オ 「

」(スライド15枚目)
カ 「


」(スライド17枚目)

(2)乙20により公然知られた発明
上記記載事項イ〜オによれば、ニワトリ始原生殖細胞株において、オボムコイド遺伝子を標的とするゲノム編集を行うことにより、OVMTg2と称される領域に欠失を有し、オボムコイド遺伝子がヘテロノックアウトされているニワトリが、雌雄15通り計33羽得られたことが記載されている。そして、上記記載事項ウ、エ(これらは訂正事項2の根拠となった本件の【図4B】と同様の内容を示すものである。)によれば、オボムコイド遺伝子のTTTCCCAACGCTACAGACAAGGの塩基配列中のTACAGが欠失しているニワトリが、33羽中で10羽(摘記事項エのmt−5の上側(雌1羽)、mt−7(雄1羽)、mt−9(雄1羽)、mt−12の真ん中(雄1羽)、mt−12の下側(雌2羽)、mt−22(雄1羽、雌1羽)、mt−31(雄1羽、雌1羽))得られたことが確認できる(下線は、当審にて付与した。以下、同様。)。
そうすると、乙20により、以下の発明が公然知られた発明になったと認められる。
「オボムコイド遺伝子がヘテロノックアウトされているノックアウトニワトリであって、オボムコイド遺伝子のTTTCCCAACGCTACAGACAAGGの塩基配列中のTACAGが欠失しているヘテロノックアウトニワトリ」(以下、「乙20発明」という。)

3 対比・判断
(1)本件発明2について
本件発明2と乙20発明とを対比すると、乙20発明における「ニワトリ」は、本件発明2における「家禽」に相当する。また、乙20発明の「オボムコイド遺伝子のTTTCCCAACGCTACAGACAAGGの塩基配列中のTACAGが欠失」は、本件発明2の「オボムコイドをコードする塩基配列において、OVMTg2(TTTCCCAACGCTACAGACAAGG)に示される塩基配列中のtacagを含む領域の欠失」に相当する。
ここで、本件発明2における配列番号6は、配列表によれば、「TTTCCCAACGCTACAGACATGG」とされているが、これは、本件の【図2】、【図4A】、【図4B】、【図16】において開示されたオボムコイド遺伝子の該当箇所の塩基配列がいずれも「TTTCCCAACGCTACAGACAAGG」であることを考慮すると、「TTTCCCAACGCTACAGACAAGG」とすべきところの誤記であると認められる。

よって、両者は、「オボムコイド遺伝子がノックアウトされているノックアウト家禽」であって、「オボムコイドをコードする塩基配列において、配列番号6(OVMTg2)に示される塩基配列中のtacagを含む領域の欠失を有している、ノックアウト家禽」の点で一致し、以下の点で相違している。
(相違点1)オボムコイド遺伝子のノックアウトについて、本件発明2では、「ホモノックアウトされている」のに対し、乙20発明では、「ヘテロノックアウトされている」点。
(相違点2)本件発明2では、「ノックアウト家禽の卵」であるのに対し、乙20発明では、「ノックアウト家禽」である点。

(相違点1)について検討する。
乙20の記載事項オ及びカには、ホモノックアウトニワトリを得ることが今後の課題であることが明確に記載され、記載事項オには、オボムコイドノックアウト卵への道のりとしてヘテロノックアウトニワトリ(G1)のオスとメスをかけあわせてホモノックアウトヒヨコ/ニワトリ(G2)を作成することが記載されている。
一方、ヘテロノックアウトの交配でホモノックアウトを得ること自体は、ニワトリに限らず、本件特許の優先日における常套手段である。
つまり、乙20発明のヘテロノックアウトニワトリからホモノックアウトニワトリを得ようとすることは、乙20の記載より当業者が強く動機づけられることであり、そのために、ヘテロノックアウト同士の交配を行うことは乙20に記載されるとともに本件特許の優先日における常套手段でもあるから、乙20発明のヘテロノックアウトニワトリ個体同士を交配することにより、ホモノックアウトニワトリを得ることは、当業者が容易に想到し得ることである。
(相違点2)について検討する。
乙20の記載事項オには、ホモノックアウトニワトリ(G2)からオボムコイドノックアウト卵を作成することが記載されている。そして、メスのニワトリが卵を産むことは一般的なことであるから、ホモノックアウトニワトリが得られた後、さらに該ニワトリが性成熟するまで飼育することで、産卵した卵を得ることは当業者が容易に想到し得ることである。

そして、本件発明2の相違点1、2の構成を採ることにより予想外に格別の効果が奏されたとも認められない。
よって、本件発明2は、乙20発明及び乙20により公然知られた事項に基づいて当業者が容易に発明をすることができたものである。

(2)本件発明3について
上記のようにして得られたオボムコイド遺伝子がホモノックアウトされたニワトリの卵であれば、オボムコイドを含まないものであることは、技術的に明らかである。
よって、本件発明3も、乙20発明及び乙20により公然知られた事項に基づいて当業者が容易に発明をすることができたものである。

(3)本件発明4について
本件明細書【0070】には、「ホモ型ノックアウトニワトリ同士の交配に依りニワトリ個体が発生し得る。5bpホモ欠損個体の雌雄を交配した卵を孵卵した結果G3世代のオボムコイド5bpホモ欠損個体が得られている(図23)。」と記載されていることから、本件発明4は、請求項2または3に記載のオボムコイド遺伝子がホモノックアウトされているノックアウト家禽同士の交配により得られる卵由来のホモノックアウト家禽と解することができる。
ニワトリは世界有数の産業動物であり、作出されたニワトリは系統維持のために繁殖させることが畜産業上の当然の課題であるといえるから、本件発明2で検討したとおりの理由により、乙20発明及び乙20により公然知られた事項に基づいて当業者が容易に発明をすることができたホモノックアウトニワトリ(G2)を交配してホモノックアウト卵を産卵させることも当業者が容易に想到し得ることである。
よって、本件発明4も、乙20発明及び乙20により公然知られた事項に基づいて当業者が容易に発明をすることができたものである。

4 特許権者の主張について
(1)特許権者の主張
特許権者は、令和4年7月27日付けの意見書において以下の(主張1)〜(主張5)の点を、令和5年2月16日付けの意見書において以下の(主張6)の点を主張している。
(主張1)ノックアウト個体の新規樹立の場合、ヘテロ型個体を掛け合わせてホモ型個体が得られないことは非常に多く(乙4〜5)、特にヘテロの若齢個体(例えば、ヒヨコ)の存在だけからでは、ホモ後代の作出可能性は予見できない。さらに、オボムコイドのマウス相同分子SPINK5のホモノックアウトが新生児致死である(乙6〜8)ことから、オボムコイドホモノックアウトニワトリ個体も得られないおそれがある。

(主張2)卵白タンパク質オボムコイドは卵白タンパク質の1割を占める主要タンパク質であり、孵化過程において生体防御、発生制御、生体機能制御、生体構成成分の生産などさまざまな重要プロセスに関わると考えられる(乙9〜15)。したがって、卵におけるオボムコイドの減少や欠損が、受精卵の孵化中に起こる種々の形態形成に悪影響を与え、ホモノックアウト後代が得られなかったり重篤な後代の発生異常をおこすことが強く懸念される。
特にニワトリは遺伝子ノックアウトの事例がほとんどなく、卵白タンパク質ノックアウトニワトリの卵やその妊孕性研究の前例が皆無であり、オボムコイドのような主要タンパク質遺伝子のノックアウトニワトリの卵が正常発生できるという根拠は一切存在しなかった。

(主張3)オボムコイドホモ型ノックアウトニワトリが得られたと仮定しても、卵管内における卵の形成プロセス(乙16〜17)、卵白アルブミンから酵素的に糖鎖を除去すると溶液粘性が低下すること(乙18)を考慮すると、オボムコイドが実質的に欠損した卵白は卵管内で物理的特性が大きく変化することが予見されることから、オボムコイド遺伝子がホモノックアウトされたニワトリから正常な卵が得られないおそれがあると予想される。

(主張4)乙20におけるオボムコイドホモノックアウト個体やその卵に関する記述は漠然としたもので何ら具体性はなく、実体的な開示とは言えない。乙20には、どのようにすればオボムコイドホモノックアウト個体やその卵を得ることができるのかについては、具体的な記載や示唆が一切ない。

(主張5)オボムコイドは非常に強力なアレルゲン物質であり、加熱や酵素による分解によってもアレルゲン性を失わないが、オボムコイドを欠損した卵は、アレルゲンフリーの卵として、生食、加工食品、ワクチン製造等、化粧品原料等、卵を用いる全ての製造物のアレルギー性を大きく低減させるという格別顕著な効果を有する。

(主張6)乙20には、オボムコイドをコードする塩基配列において特定の塩基配列tacagを含む領域を欠失させてみることについて、何ら示唆や動機付けがない。一方、本件明細書実施例4では、配列番号6(OVMTg2)に示される塩基配列中のtacagを欠失したホモノックアウト家禽について具体的に記載されているし、配列番号6(OVMTg2)に示される塩基配列中のtacagを含む領域を欠失した事例についても、図4B下段に示す欠失を有するヘテロノックアウト家禽が記載されており、これらの個体を交配することでオボムコイドホモノックアウト個体の作出が可能であることが乙21で確認されている。

(2)検討
(主張1)〜(主張3)について
特許権者の主張は、いずれも、オボムコイドホモノックアウトニワトリ個体を得ることに阻害事由があることや、その卵が得られない可能性があることを述べるにとどまるものであり、これらを具体的に裏付けるものとは認められない。
ホモノックアウト個体が、ヘテロノックアウト個体同士の交配によって得られない場合もあることは、技術常識であると認められるが、乙4によれば、マウス遺伝子における実験ではあるが、半分以上の遺伝子では、ホモ型個体が得られたことが示されている(453頁右欄4〜13行)。また、甲A−3〜A−6によれば、ニワトリオボムコイド遺伝子のオーソログであるSPINK6のホモノックアウトマウスでは、顕著な異常が報告されなかったこと、参考資料1と同じSPINK5を示し、本件特許の優先日前公知となった参考資料1’(山西清文,”SPINK5の分子遺伝学的解析”,2003年度研究成果報告書概要[online],2005年4月8日,科学研究費助成事業データベース,国立情報学研究所,[令和4年12月7日検索],インターネット,<URL:https://kaken.nii.ac.jp/ja/report/KAKENHI-PROJECT-13470174/134701742003kenkyu_seika_hokoku_gaiyo/>)によれば、ニワトリオボムコイドのマウス相同分子SPINK5のホモノックアウトマウスが正常発生することが示されていることなどを勘案すると、たとえ、同じSPINK5ホモノックアウトマウスが致死であるとの報告がある(乙8)としても、オボムコイドのホモノックアウトの取得を当業者に躊躇させるに足りるものとは認められない。
さらに、乙20の記載事項アには、「鶏卵アレルゲン蛋白質の除去」が「ニワトリゲノム編集で出来そうなこと」の一つとして明示され、乙20の記載事項オには、オボムコイドホモノックアウト卵への道のりと記載されたスライドの道のりの先に、ホモノックアウトニワトリから産出されたオボムコイドノックアウト卵が明記され、乙20の記載事項オ、カには、ホモノックアウトのニワトリの卵が得られるかどうかが今後の課題であると記載されているから、このような乙20の記載に接した当業者は、アレルゲンフリーであるオボノックアウトニワトリの卵の取得に対する道のりどおりの研究を先に進める強い動機付けを抱くものと解される。
よって、特許権者が主張するような、オボムコイドホモノックアウトニワトリ個体やその卵が得られない可能性があったとしても、上記の強い動機付けを打ち消してまで、ホモノックアウトニワトリの取得、さらに、その卵の取得を断念するほどの事情があったとは認められない。

(主張4)〜(主張5)について
乙20には、ホモノックアウト個体やその卵について実際に得たことは記載されていないが、乙20の記載事項オには、ホモノックアウト個体を、ヘテロノックアウト個体を交配させて得ることは記載されており、実際に本件発明においても、ヘテロ型のノックアウトニワトリを交配することで、特段の工夫を要することなくホモ型のノックアウトニワトリが得られている(実施例4)。
そうすると、本件発明は、乙20に記載されたとおりの方法を通常の条件で実行したに過ぎないものと認められる。また、その卵についても、通常メスニワトリは、一定まで成長すれば、自然と産卵するものであり、本件明細書をみても、本件発明において、産卵させるための特別の創意工夫が採用されているとは認められない。
そして、そうして得られた、オボムコイドホモノックアウトニワトリの卵が、アレルゲンであるオボムコイドフリーであることは、乙20の記載に照らすと、当業者において予想どおりの効果に過ぎない。

(主張6)について
オボムコイドをコードする塩基配列において特定の塩基配列tacagを含む領域を欠失することは、上記(2)で記載したとおり、乙20の記載事項ウ、エ(これらは主張6の根拠となる図4Bと同様の内容を示すものである。)に記載された事項であり、TACAGが欠失しているヘテロノックアウトニワトリ同士を、乙20の記載に従い、交配することで、オボムコイドホモノックアウトニワトリを作出することに格別の困難を要するとは認められない。 なお、乙21は、本件特許の優先日の5年以上後に頒布されたものであるが、乙21をみても、オボムコイド遺伝子のtacagを含む領域を欠失したノックアウトニワトリが、オボムコイド遺伝子の異なる領域を欠失したものと比べて、異なる性質を有すると解せるような記載はない。
よって、特許権者の上記主張は、いずれも理由がない。

第6 むすび
以上のとおり、本件発明2〜4に係る特許は、特許法第29条第2項の規定に違反してされたものであり、同法第113条第2号に該当し、取り消されるべきものである。
また、本件発明1に係る特許は、訂正により削除され、特許異議の申立ての対象が存在しないものとなったので、特許法第120条の8第1項で準用する同法第135条の規定により却下すべきものである。
よって、結論のとおり決定する。




 
別掲 (行政事件訴訟法第46条に基づく教示) この決定に対する訴えは、この決定の謄本の送達があった日から30日(附加期間がある場合は、その日数を附加します。)以内に、特許庁長官を被告として、提起することができます。
 
発明の名称 (54)【発明の名称】遺伝子改変家禽卵
【技術分野】
【0001】
本発明は、ノックアウト家禽の卵及びそれに由来する個体、ノックイン家禽の卵並びに濃厚卵白に関する。
また、本発明は、外因性遺伝子の発現産物の調製方法に関する。
【背景技術】
【0002】
これまでオボアルブミン翻訳開始点上流2.8kbpあるいはこの2.8kbpに更に上流のestrogen−responsive enhancer elementを結合したプロモーターにより卵内にヒトインターフェロンβを発現誘導する試みが行われている(非特許文献1)。この例では遺伝子導入はノックインではなく、レンチウイルスベクターを用いて行われており、ゲノム上の様々な場所に、また場合によっては複数個のベクター遺伝子が挿入されていることが示されている。このような遺伝子導入形態と一致して、卵内に分泌されるヒトインターフェロンβの濃度は大きくばらついており、6羽のニワトリの濃度平均が3.5−426μg/mlである。さらに、同一個体由来の卵であっても非常に濃度にゆらぎがありインターフェロンβの発現が極めて不安定であることがデータから読み取れる。更に、染色体上の様々な位置に挿入されているため、ジーンサイレンシング等の効果を受け、G1ニワトリでインターフェロンβを比較的多く発現したものの子孫(G2)が、総じてその発現量を減らす傾向が認められる。
【0003】
非特許文献2では全身性に発現するアクチンプロモーターを用い、レトロウイルスベクターを用いて全身にFv−Fc蛋白質を発現するトランスジェニックキメラニワトリ(G0)を作製している。このG0ニワトリの中には5mg/mlと高濃度のFv−Fc蛋白質を発現するものも認められたが、ウイルス感染をニワトリ胚において行っている為、遺伝子の導入の有無、挿入コピー数、挿入位置が同一個体の各細胞でまちまちになるというモザイク状の遺伝子導入となっている。このため、高濃度の蛋白質を発現するG0キメラ個体の子孫のトランスジェニック個体は挿入遺伝子の数や位置がまちまちであり、G0キメラ個体の性質を完全に引き継ぐことはありえず、実際G1世代では2mg/ml以下にG1世代では0.8mg/ml以下に留まっている。また、ウイルス感染したキメラニワトリの生殖系細胞において外因性遺伝子の導入がなされていないことも多い。したがって、たまたま1羽あるいは数羽程度の蛋白質高発現ニワトリをG0世代に得ることが可能であっても、同じ性質、遺伝情報を有する個体を増やすことはできない。このようなG0個体間あるいはG0−G1世代間の不均一性は、外来蛋白質を生産するニワトリを大量に飼育することで多くの卵を得て蛋白質の大量生産を行ういわゆる「動物工場」を構築する上で致命的な欠点である。
【0004】
非特許文献4では卵管特異的遺伝子オボアルブミンを、TALEN法を用いて遺伝子破壊した例が示されている。しかし、この文献ではオボアルブミンがヘテロ型(+/−)で欠損したヒヨコが得られたことを示すに留まり、このような家禽が将来卵を産生し得るか、またnull(−/−)の遺伝子型の卵やこれに由来する個体が得られるか、更にはホモノックアウト雌(−/−)が卵を産むか、このオボアルブミン蛋白質を消失した卵から個体を生じ得るか、予見できない。
【先行技術文献】
【非特許文献】
【0005】
【非特許文献1】Lillico, S.G. et al. Oviduct−specific expression of two therapeutic proteins in transgenic hens. Proc Natl Acad Sci U S A 104, 1771−1776 (2007).
【非特許文献2】Kamihira et al. High−Level Expression of Single−Chain Fv−Fc Fusion Protein in Serum and Egg White of Genetically Manipulated Chickens by Using a Retroviral Vector. Journal of Virology, p.10864−10874(2005).
【非特許文献3】van de Lavoir MC, Diamond JH, Leighton PA, Mather−Love C, Heyer BS, Bradshaw R, Kerchner A, Hooi LT, Gessaro TM, Swanberg SE et al: Germline transmission of genetically modified primordial germ cells. Nature 2006, 441(7094):766−769.
【非特許文献4】Park, T.S., Lee, H.J., Kim, K.H., Kim, J.S. & Han, J.Y. Targeted gene knockout in chickens mediated by TALENs. Proc Natl Acad Sci U S A. 111, 12716−12721 (2014).
【発明の概要】
【発明が解決しようとする課題】
【0006】
本発明は、卵管特異的遺伝子にコードされるタンパク質の発現量を低減もしくは消失させた家禽卵を提供することを目的とする。
また、本発明は、外因性遺伝子の発現が安定し、かつ、遺伝子産物発現量の多い家禽卵を提供することを目的とする。
さらに、本発明はノックイン技術により鶏卵に外来遺伝子産物を発現した際に効率良く外来遺伝子産物を回収する技術を提供することを目的とする。
【課題を解決するための手段】
【0007】
本発明は、以下のノックアウト家禽の卵及びノックイン家禽の卵を提供するものである。またノックイン家禽の卵から効率良く外来遺伝子産物を調製する方法を提供するものである。
本発明は、一態様において、
〔1〕オボアルブミン、オボムコイド、オボムチン、オボトランスフェリン、オボインヒビター及びリゾチームからなる群から選ばれる少なくとも1種の卵管特異的遺伝子がノックアウトされ、かつ、オボアルブミン、オボムコイド、オボムチン、オボトランスフェリン、オボインヒビター及びリゾチームからなる群から選ばれる少なくとも1種の卵内アレルゲンタンパク質が低減又は消失されたノックアウト家禽の卵に関する。
【0008】
ここで、本発明のノックアウト家禽の卵は、一実施の形態において、
〔2〕上記〔1〕に記載のノックアウト家禽の卵であって、
前記ノックアウトされた卵管特異的遺伝子をコードする塩基配列において、PAM配列より5’側または3’側の領域近傍に塩基の欠失、置換、または挿入を有していることを特徴とする。
また、本発明のノックアウト家禽の卵は、一実施の形態において、
〔3〕上記〔1〕または〔2〕に記載のノックアウト家禽の卵であって、
前記卵管特異的遺伝子がホモノックアウトされており、前記卵管特異的遺伝子の遺伝子型がnull(−/−)であることを特徴とする。
また、本発明のノックアウト家禽の卵は、一実施の形態において、
〔4〕上記〔1〕〜〔3〕のいずれかに記載のノックアウト家禽の卵であって、
前記卵管特異的遺伝子がオボアルブミンであることを特徴とする。
【0009】
また、本発明のノックアウト家禽の卵は、一実施の形態において、
〔5〕上記〔4〕に記載のノックアウト家禽の卵であって、
オボアルブミンをコードする塩基配列において、配列番号1(OVATg1)に示される塩基配列に相当する領域およびその近傍領域に塩基の欠失、置換、または挿入を有していることを特徴とする。
また、本発明のノックアウト家禽の卵は、一実施の形態において、
〔6〕上記〔1〕〜〔3〕のいずれかに記載のノックアウト家禽の卵であって、
前記卵管特異的遺伝子がオボムコイド遺伝子であることを特徴とする。
また、本発明のノックアウト家禽の卵は、一実施の形態において、
〔7〕上記〔6〕に記載のノックアウト家禽の卵であって、
オボムコイドをコードする塩基配列において、配列番号6(OVMTg2)に示される塩基配列に相当する領域およびその近傍領域に塩基の欠失、置換、または挿入を有していることを特徴とする。
また、本発明のノックアウト家禽の卵は、一実施の形態において、
〔8〕上記〔6〕または〔7〕に記載のノックアウト家禽の卵であって、
内在性のオボムコイドを実質的に含まないことを特徴とする。
【0010】
また、本発明は、別の態様において、
〔9〕上記〔1〕〜〔8〕のいずれかに記載のノックアウト家禽の卵由来のノックアウト家禽に関する。
【0011】
また、本発明は、別の態様において、
〔10〕卵管特異的遺伝子プロモーターの制御下に外因性遺伝子がホモ又はヘテロでノックインされ、かつ、外因性遺伝子の発現産物が卵内で安定高発現しているノックイン家禽の卵であって、
前記卵管特異的遺伝子プロモーターが、オボアルブミン、オボムコイド、オボムチン、オボトランスフェリン、オボインヒビター及びリゾチームからなる群から選ばれる少なくとも1種の卵管特異的遺伝子のプロモーターである、ノックイン家禽の卵に関する。
【0012】
ここで、本発明のノックイン家禽の卵は、一実施の形態において、
〔11〕上記〔10〕に記載のノックイン家禽の卵であって、
前記卵管特異的遺伝子プロモーターが、オボアルブミン遺伝子のプロモーターであり、前記外因性遺伝子が薬剤耐性遺伝子とともにオボアルブミン遺伝子のエクソン2に挿入されていることを特徴とする。
また、本発明のノックイン家禽の卵は、一実施の形態において、
〔12〕上記〔10〕または〔11〕に記載のノックイン家禽の卵であって、
前記外因性遺伝子が、オボアルブミンをコードする塩基配列における配列番号1(OVATg1)に示される塩基配列に相当する領域およびその近傍、または、配列番号24(OVATg2)に示される塩基配列に相当する領域およびその近傍に挿入されていることを特徴とする。
また、本発明のノックイン家禽の卵は、一実施の形態において、
〔13〕上記〔10〕〜〔12〕のいずれかに記載のノックイン家禽の卵であって、
前記外因性遺伝子によりコードされるタンパク質が、卵1個あたり1mg以上で含まれることを特徴とする。
また、本発明のノックイン家禽の卵は、一実施の形態において、
〔14〕上記〔10〕〜〔13〕のいずれかに記載のノックイン家禽の卵であって、
前記外因性遺伝子の発現産物が濃厚卵白に優位に発現することを特徴とする。
また、本発明のノックイン家禽の卵は、一実施の形態において、
〔15〕上記〔10〕〜〔14〕のいずれかに記載のノックイン家禽の卵であって、
前記外因性遺伝子が、インターフェロンβ、免疫グロブリン、または、コラーゲンをコードする遺伝子であることを特徴とする。
また、本発明のノックイン家禽の卵は、一実施の形態において、
〔16〕上記〔10〕〜〔15〕のいずれかに記載のノックイン家禽の卵であって、
前記外因性遺伝子がヒト由来の遺伝子であることを特徴とする。
【0013】
また、本発明は、別の態様において、
〔17〕オボアルブミン遺伝子プロモーターの制御下に外因性遺伝子がホモ又はヘテロでノックインされたノックイン家禽の卵由来の濃厚卵白であって、
安定高発現している前記外因性遺伝子の発現産物を優位に含む、濃厚卵白に関する。
【0014】
また、本発明は、別の態様において、
〔18〕外因性遺伝子の安定高発現により前記外因性遺伝子の発現産物を含む、ノックイン家禽の卵を作製する方法であって、
(a)家禽始原生殖細胞の卵管特異的遺伝子プロモーターの制御下に前記外因性遺伝子をノックインする工程と、
(b)前記家禽生殖細胞を用いて、前記卵管特異的遺伝子プロモーターの制御下に前記外因性遺伝子をホモ又はヘテロでノックインした雌家禽を作製する工程と、
(c)前記雌家禽から得られた前記外因性遺伝子を発現する家禽卵を得る工程とを含む、方法に関する。
【0015】
ここで、本発明の外因性遺伝子の安定高発現により前記外因性遺伝子の発現産物を含む、ノックイン家禽の卵を作製する方法は、一実施の形態において、
〔19〕上記〔18〕に記載の外因性遺伝子の安定高発現により前記外因性遺伝子の発現産物を含む、ノックイン家禽の卵を作製する方法であって、
前記工程(a)が、(i)前記卵管特異的遺伝子プロモーターの制御下にある翻訳開始点の5’側領域、前記外因性遺伝子、薬剤耐性遺伝子ユニット、および、前記翻訳開始点の3’側領域を含むドナーコンストラクトと、(ii)標的配列、および、異なる薬剤耐性遺伝子ユニットを含むベクターとを用いて、前記外因性遺伝子をゲノム編集により導入する工程であることを特徴とする。
また、本発明の外因性遺伝子の安定高発現により前記外因性遺伝子の発現産物を含む、ノックイン家禽の卵を作製する方法は、一実施の形態において、
〔20〕上記〔19〕に記載の外因性遺伝子の安定高発現により前記外因性遺伝子の発現産物を含む、ノックイン家禽の卵を作製する方法であって、
前記工程(a)における前記卵管特異的遺伝子プロモーターが、オボアルブミン遺伝子プロモーターであって、
前記工程(d)が、前記家禽卵の濃厚卵白から前記外因性遺伝子の発現産物を回収する工程であることを特徴とする。
また、本発明の外因性遺伝子の安定高発現により前記外因性遺伝子の発現産物を含む、ノックイン家禽の卵を作製する方法は、一実施の形態において、
〔21〕上記〔19〕または〔20〕に記載の外因性遺伝子の安定高発現により前記外因性遺伝子の発現産物を含む、ノックイン家禽の卵を作製する方法であって、
前記工程(a)が、(i)オボアルブミン翻訳開始点の5’側2.8kb、前記外因性遺伝子、ネオマイシン耐性遺伝子ユニット、および、オボアルブミン翻訳開始点の3’側3.0kbを含むドナーコンストラクトと、(ii)前記標的配列としての配列番号24に示される塩基配列、および、ネオマイシン耐性遺伝子ユニットを含むベクターとを用いて、前記外因性遺伝子をCRISPRにより導入する工程であることを特徴とする。
【0016】
また、本発明は、別の態様において、
〔22〕ノックイン家禽の卵より外因性遺伝子の発現産物を調製する方法であって、
上記〔18〕〜〔21〕のいずれかに記載の方法における前記工程(c)の後に、(d)前記家禽卵から前記外因性遺伝子の発現産物を回収する工程をさらに含む、方法に関する。
【発明の効果】
【0017】
本発明のノックイン家禽の卵は、全身で同一場所に同一の外因性遺伝子(非家禽由来の遺伝子)挿入がなされたノックイン家禽個体により生産され、個体間での蛋白質発現量の差異は小さく、世代を超えてその遺伝情報と形質を正しく伝播することが出来る。さらに、遺伝子ノックインの位置を卵管特異的遺伝子にすることで外因性遺伝子発現を卵管に限局できる。このため全身性に発現させた場合と比べて発生過程やニワトリの健康に影響をおよぼす可能性が明らかに少なく、優れている。加えてオボムコイドなど卵白で高発現する遺伝子の制御下に外因性遺伝子を発現させることで外因性遺伝子の発現効率が高くなり、さらに好ましい。加えて、遺伝子ノックインをゲノム編集により行うと効率良くノックインニワトリが樹立可能であるが、このような新しい技法を用いても卵管に外来遺伝子を発現可能なこと、卵白に外来遺伝子発現産物が蓄積されることを確認した。また、外来遺伝子由来産物が卵白内の濃厚卵白に多く存在することを初めて明らかにし、これにより外来遺伝子産物を含む卵、好ましい実施形態では卵白遺伝子の遺伝子座に外来遺伝子をノックインした卵の濃厚卵白を含む領域を回収することで効率良く外来遺伝子由来産物を回収することができる。
本発明のノックアウト家禽の卵は、ノックアウトされる遺伝子が卵管特異的遺伝子であり、発生に影響することが懸念されるが、本発明者は、このようなノックアウト家禽の卵が得られることを確認した。
【図面の簡単な説明】
【0018】
【図1】ニワトリオボアルブミン遺伝子の標的配列(OVATg1の標的配列)。大文字がsgRNA認識部位、隣接する下線部がPAM配列を示す。
【図2】ニワトリオボムコイド遺伝子の標的配列(OVMTg2の標的配列)。大文字がsgRNA認識部位、隣接する下線部がPAM配列を示す。
【図3】CRISPRによるオボアルブミン遺伝子破壊例。大文字(下線)がsgRNA認識部位、隣接する囲い部分がPAM配列を示す。変異した配列の欠失部は−(ハイフン)、変異部は大文字で表記。OVATg1のMetは翻訳開始部位を示す。
【図4A】CRISPRによるオボムコイド遺伝子破壊例。大文字(下線)がsgRNA認識部位、隣接する囲い部分がPAM配列を示す。
【図4B】上段:オボムコイド遺伝子が破壊されたニワトリの例。写真の移植始原生殖細胞由来ニワトリ(黒)のオボムコイド遺伝子は片アレルで図2のTg2領域の5塩基が欠損している。ニワトリゲノムの当該領域をセンス側、アンチセンス側それぞれから塩基配列を解析した結果を示す。下段:ニワトリ個体に認められたオボムコイド遺伝子変異の例(F1ニワトリ)。1から31塩基の欠損が認められた。
【図5A】オボアルブミン遺伝子座へのヒトインターフェロンβ遺伝子ノックインとゲノムPCRによるノックインの証明。プライマー1(P1)〜プライマー8(P8)は以下の配列に対応。P1:配列15、P2:配列17、P3:配列16、P4:配列14、P5:配列18、P6:配列20、P7:配列21、P8:配列19。NestedPCRの結果、ノックイン始原生殖細胞(PGCs)由来ゲノムにのみ想定サイズの増幅産物を認める(写真、矢印).
【図5B】キメラニワトリ精子におけるオボアルブミン遺伝子座へのヒトインターフェロンβ遺伝子ノックインの証明。4羽のキメラニワトリ(411−414)、1羽のネガティブコントロールニワトリ(416、NC)の精液ゲノム及びノックイン細胞(PCIFNKI#4)ゲノムを配列18と19(3’UTR)、配列15と14(5’OVAp_out−IFN)、配列15と22(5’OVAp_out−OVA(ATG))のプライマーを用いて増幅した。予期されるサイズに出現したバンドを*で示す。411,412においてポジティブコントロールと同程度の相対強度のノックインシグナルを認める。
【図5C】オボアルブミン遺伝子座にヒトインターフェロンβ遺伝子がノックインされたニワトリ。図5Bの411と412の後代ニワトリ(雌)の写真および、後代血液由来ゲノムをPCR解析し、オボアルブミン遺伝子座にIFNドナーコンストラクトがノックインされたことを示す。野生型(WT:ネガティブコントロール)ニワトリの血液、ノックイン後代(KI)ニワトリの血液ゲノム及びノックイン細胞(KIPGC:ポジティブコントロール)由来ゲノムを配列18と19(ノックイン3’領域)、配列15と14(ノックイン5’領域)、配列15と22(内在性オボアルブミン)のプライマーを用いて増幅した。予期されるサイズに出現したバンドを*で示す。411,412後代においてポジティブコントロールと同パターンのシグナルを認め、後代ニワトリのオボアルブミン遺伝子座にIFNドナーコンストラクトがノックインされたと判断できる。
【図6A】ニワトリオボアルブミン遺伝子の標的配列(2ヶ所,OVATg1とOVATg2の標的配列)。大文字がsgRNA認識部位、隣接する下線部がPAM配列を示す。
【図6B】ニワトリ始原生殖細胞オボアルブミン遺伝子座への遺伝子ノックインの効率化。導入群1と導入群2ではノックインの効率は変わっておらず、細胞数は導入群2の方が多いことから、導入群2の導入法がより好ましい。導入群2と導入群3では導入群3の方がノックイン効率が高いと考えられ、導入群3の導入法がより好ましい。
【図7】オボアルブミン遺伝子座へのヒト免疫グロブリン遺伝子ノックインとゲノムPCRによるノックインの証明。プライマー1(P1)〜プライマー8(P8)は以下の配列に対応。P1:配列15、P2:配列17、P3:配列29、P4:配列28、P5:配列18、P6:配列20、P7:配列21、P8:配列19。Nested PCRの結果、ノックイン始原生殖細胞(PGCs)由来ゲノムにのみ想定サイズの増幅産物を認める(写真、矢印)
【図8】オボアルブミン遺伝子座へのヒトコラーゲン遺伝子ノックインとゲノムPCRによるノックインの証明。プライマー1(P1)〜プライマー8(P8)は以下の配列に対応。P1:配列15、P2:配列17、P3:配列29、P4:配列28、P5:配列18、P6:配列20、P7:配列21、P8:配列31。Nested PCRの結果、ノックイン始原生殖細胞(PGCs)由来ゲノムにのみ想定サイズの増幅産物を認める(写真、矢印)
【図9】インターフェロンβノックイン雌ニワトリの生産する卵の像。卵黄周囲の濃厚卵白に白濁が認められる。
【図10】卵白成分の抗ヒトインターフェロンβ抗体を用いたウエスタンブロット像。ノックインニワトリ由来卵に組換えヒトインターフェロンβ(矢印部)が発現し、水溶性卵白よりも濃厚卵白において単位体積あたりより多くのヒトインターフェロンβ蛋白質が存在する。相対濃度で濃厚卵白のほうが水溶性卵白の100倍多いことがわかる。
【図11】ヒトインターフェロンβノックインニワトリの産んだ卵白におけるヒトインターフェロンβの分布。複数のニワトリ由来卵(KI egg1,2)において水溶性卵白よりも濃厚卵白で多くのインターフェロンβ蛋白質が認められる(囲い部分)。濃厚卵白中の組換えヒトインターフェロンβは約50mg/mlの濃度で存在するオボアルブミン蛋白質の十分の一であるから(黒矢印)約5mg/ml程度と推定される。
【図12】インターフェロンβノックインニワトリの産む卵に含まれるインターフェロンβ蛋白質発現の安定性。1週間に渡り(d1〜d7)、卵を採取し、濃厚卵白に含まれるヒトインターフェロンβをCBB染色により同定した。期間中安定したインターフェロンβの発現が認められた。
【図13】濃厚卵白遠心後の白色沈殿像 無処理1および様々な処理(2−10)を加えたインターフェロンβノックインニワトリの産む卵の濃厚卵白を遠心し、白色沈殿の量を比較した。2−10はいずれも1に比べると白色沈殿量が減少している。図13ではそれぞれのチューブに濃厚卵白液200μlを加え、3Mの飽和アルギニン溶液4倍量(800μl)を加え転倒混和したもの(チューブ2)、3Mの飽和アルギニン溶液4倍量(800μl)を加え超音波破砕を行ったもの(チューブ3)、少量のアルギニン(20mg)を加え転倒混和したのちPBSにより1mlにしたもの(チューブ4)、少量のアルギニン塩酸塩(20mg)を加え転倒混和したのちPBSにより1mlにしたもの(チューブ5)、PBSにより1mlにし、超音波破砕を行ったもの(チューブ6)、飽和量以上のアルギニン塩酸塩(200mg)を加えて転倒混和したもの(チューブ7)、3Mの飽和アルギニン溶液2倍量(400μl)を加え超音波破砕を行ったもの(チューブ8)、少量のアルギニン塩酸塩(20mg)を加え超音波破砕したもの(チューブ9)、少量の食塩(40mg)を加え超音波破砕したもの(チューブ10)である。20k×Gで15分遠心すると白色沈殿は認められるが、いずれも無処理(チューブ1)の場合より減少しており、特に超音波破砕を行ったもののうちチューブ3,6,8,9で顕著に減少していた。
【図14】様々な処理を行った濃厚卵白上清の電気泳動像。レーン0は遠心処理を行っていない濃厚卵白をレーン1−10は図13のチューブ1−10の上清をそれぞれ泳動に供される大元の卵白量を同一にして泳動したものである。黒矢印がヒトインターフェロンβのバンドを示す。
【図15】ヒトインターフェロンβノックインニワトリ由来卵に含まれるヒトインターフェロンβの活性。濃厚卵白粗精製物、濃厚卵白遠心上清、水溶性卵白いずれにおいてもヒトインターフェロンβの活性が認められる。
【図16】オボムコイドヘテロノックアウト(G1世代:ORF5塩基欠損)雄、雌とその後代に認められるオボムコイドヘテロ、ホモノックアウトおよび野生型ニワトリのゲノム。
【図17】異なるG1個体から得られた濃厚卵白の電気泳動像。野生型ニワトリ(ctrl)由来濃厚卵白、5羽(#584,#766,#714,#645,#640)のヒトインターフェロンβノックインニワトリ由来の濃厚卵白をそれぞれ電気泳動している。矢印がヒトインターフェロンβのバンドを示す。
【図18】ヒトインターフェロンβノックインニワトリ由来卵に含まれるヒトインターフェロンβ(下段)と市販の組換えヒトインターフェロンβ(上段)との活性比較。バイオアッセイ用細胞の培養上清をQuanti−Blue基質液に添加した像。バイオアッセイ時に細胞に添加する卵白上清ならびに市販インターフェロンβを5倍ずつ段階的に希釈しており、基質液の変色から0.01μg/μlの市販インターフェロンβに対して卵白上清は625倍以上の濃度のインターフェロンβを含むとわかる。
【図19】G1世代とG2世代ヒトインターフェロンβノックインニワトリ由来卵におけるインターフェロンβ蛋白質(左)。G1由来卵とG2(3羽の雌ニワトリ)由来卵の濃厚卵白内のヒトインターフェロンβ濃度はほぼ同等である。またG2由来卵もG1由来卵と同様に白濁する。
【図20】オボアルブミン遺伝子座へヒト抗体遺伝をノックインしたニワトリ由来卵白の抗ヒト免疫グロブリン抗体を用いたウエスタンブロット像。ノックインニワトリ由来卵(hIgG KI)には野生型(ctr1)由来卵白中に存在しない組換えヒト抗体(矢印部hIgG)が発現する(左図)。また、非還元状態で電気泳動すると市販のヒト抗体(Herceptin)と同じ移動度を呈することから抗体複合体を形成することがわかる(右図)。1/2k(1/2000),1/200,1/20は卵白の希釈率を示す。バンド濃度から推定し、抗体複合体の濃度は1mg/ml以上である。
【図21】オボムコイドホモノックアウト(OVM−/−、G2世代)由来の卵。卵は外見上野生型のものと著しい違いを認めず(左図)、卵白、卵黄とも加熱によって凝固するため(右図)、調理等加工する上で野生型の卵と同様に扱うことが可能である。
【図22】オボムコイドホモノックアウト(OVM−/−、G2世代)由来の卵を孵化させて得られたG3世代のオボムコイドホモノックアウト個体(上図)。OVM−/−雌とOVM−/−雄を交配し得られた。内在性のオボムコイド遺伝子だけでなく卵のオボムコイドが存在せずともニワトリは発生できる。フラグメント解析により、オボムコイド遺伝子が欠損している領域が5bpホモ欠損していることがわかる(下図)。
【図23】4系統のインターフェロンβ雌ノックインニワトリ由来卵の写真。図9と同様に全て濃厚卵白が白濁している。
【発明を実施するための形態】
【0019】
本発明では、家禽の始原生殖細胞の遺伝子をゲノム編集により改変し、遺伝子改変した始原生殖細胞に由来するノックイン又はノックアウトの雌家禽を得、この雌から本発明のノックイン又はノックアウト家禽の卵を得る。
【0020】
本明細書において、「ノックアウト家禽の卵」は、ノックアウトされた遺伝子の遺伝子型がヘテロ(+/−)あるいはホモ(−/−; null)の雌の家禽が産んだ卵の両方を含む。ノックアウトされる遺伝子が卵管で発現し、卵白に集積する卵内アレルゲンの遺伝子の場合、ヘテロノックアウト家禽の卵では卵内アレルゲンタンパク質が低減されたノックアウト家禽の卵になる。一方、ホモノックアウト雌の家禽が産んだ卵は、卵内アレルゲンタンパク質が消失されたノックアウト家禽の卵になる。
本明細書において、「ノックイン家禽の卵」は、ノックインされた遺伝子の遺伝子型がヘテロ(+/−)の雌の家禽が産んだ卵、或いは、ノックインされた遺伝子の遺伝子型がホモ(+/+)の家禽受精卵の両方を含む。ノックインされた遺伝子の遺伝子型がヘテロ(+/−)の雌の家禽が産んだ卵と比較して、ノックインされた遺伝子の遺伝子型がホモ(+/+)の雌の家禽が産んだ卵の方が、外因性遺伝子の発現産物が多く含まれる。
【0021】
ゲノム編集は、二本鎖DNAの切断とその修復のエラーを利用して遺伝子改変を行う技術であり、標的の二本鎖DNAを切断できるヌクレアーゼ、前記ヌクレアーゼと結合もしくは複合化したDNA認識成分を使用することができる。ゲノム編集としては、ZFN(zincfinger nuclease)、TALEN、CRISPRが挙げられる。例えば、ZFNでは、FokI(ヌクレアーゼ)とジンクフィンガーモチーフ(DNA認識成分)が用いられ、TALENでは、FokI(ヌクレアーゼ)とTALエフェクター(DNA認識成分)が用いられ、CRISPRでは、Cas9(ヌクレアーゼ)とguide RNA(gRNA,DNA認識成分)が用いられる。ゲノム編集に用いられるヌクレアーゼは、ヌクレアーゼ活性を有していればよく、ヌクレアーゼ以外にDNAポリメラーゼ、リコンビナーゼなどを用いることもできる。
【0022】
家禽としては、ニワトリ、ウズラ、シチメンチョウ、アヒル、ガチョウ、オナガドリ、チャボ、ハト、ダチョウ、キジ、ホロホロチョウなどが挙げられ、好ましくはニワトリ、ウズラなどが挙げられる。
始原生殖細胞は雄と雌のいずれでもよい。ニワトリなどの家禽始原生殖細胞は浮遊性の細胞であり、BRL細胞やSTO細胞などのフィーダー細胞存在下で培養される。または適当なサイトカインを培地に添加することでフィーダー細胞非存在下で培養しても良い。
【0023】
ゲノム編集により改変される遺伝子は、卵管特異的遺伝子であり、具体的にはオボアルブミン、オボムコイド、オボムチン、オボトランスフェリン、オボインヒビター、リゾチームなどが挙げられる。
ゲノム編集により遺伝子機能はノックアウトにより消失する。ゲノム編集により、遺伝子の少なくとも1つの塩基が欠失もしくは挿入する場合、フレームシフトにより遺伝子機能は消失し得、フレームシフトが起こらない場合でも一部のアミノ酸が欠失することで機能が消失し得る。また、欠失や置換によって終止コドンが生じて機能が消失することもある。
【0024】
ゲノム編集により外因性遺伝子をノックインする場合、外因性遺伝子が卵管特異的遺伝子座にノックインされると、卵管特異的遺伝子の発現産物の代わりに外因性遺伝子の発現産物を含む卵が得られるので好ましい。このような外因性遺伝子の発現産物であるタンパク質としては、様々な分泌性のタンパク質やペプチドが考えられ、抗体(モノクローナル抗体)又はその断片(例えばscFv、Fab、Fab’、F(ab’)2、Fv、一本鎖抗体、scFv、dsFvなど)、酵素、ホルモン、成長因子、サイトカイン、インターフェロン、コラーゲン、細胞外マトリクス分子、ワクチンなどの機能性ポリペプチド、アゴニスト性タンパク質、アンタゴニスト性タンパク質などが挙げられる。外因性遺伝子がコードするタンパク質は、ヒトに投与する医薬になり得る生理活性タンパク質の場合、哺乳動物由来、好ましくはヒト由来である。また、プロテインAや蜘蛛の糸を構成するタンパク質などの工業的に使用可能なタンパク質の場合、微生物(細菌、酵母など)、植物、動物を含む任意の生物由来のタンパク質、あるいは人工的なタンパク質をコードする外因性遺伝子が挙げられる。
【0025】
外因性遺伝子は単一の遺伝子であっても複数の遺伝子であっても良い。複数の遺伝子の場合には、複数の遺伝子が卵管特異的遺伝子の制御下に発現できればよく、複数の遺伝子をIRESなどの配列を介在させて発現させたり、2Aペプチドをコードする配列などを介在させて複数の蛋白質をオボアルブミンプロモーターの制御下に一度に発現させ、ペプチドを切断する形で発現させても良い。
外因性タンパク質は、適切なシグナルペプチドを付加してもよく、家禽類で発現しやすくするためにコドンユーセージを変更してもよい。
【0026】
本発明のノックイン家禽の卵の好ましい一実施の形態においては、外因性遺伝子の発現産物は濃厚卵白に優位に発現する。ここで「優位」とは、(ア)濃厚卵白における外因性遺伝子の発現量が、質量でノックイン卵全体における外因性遺伝子の発現量に対して50%以上、60%以上、65%以上、70%以上、75%以上、80%以上、85%以上、90%以上、95%以上或いは98%以上であることを意味するか、または、(イ)濃厚卵白以外の卵中における外因性遺伝子の発現量と比較した際に、濃厚卵白における外因性遺伝子の発現量の相対濃度が1.1倍以上、好ましくは2倍以上、より好ましくは10倍以上で発現することを意味する。濃厚卵白にはノックインされた外因性遺伝子の発現産物が濃縮されているので、精製が容易である。また、外因性遺伝子の発現産物は活性型で発現され得る。濃厚卵白は、外因性遺伝子の発現産物により白濁することがあるが、白濁したタンパク質は、超音波処理、アルギニン塩酸塩などの可溶化剤の添加などにより容易に可溶化することができる。
【0027】
本発明の好ましい実施形態において、濃厚卵白に発現されたノックイン遺伝子の発現産物は、溶解状態であってもよく、非溶解状態であってもよい。非溶解状態のノックイン遺伝子の発現産物は、活性なタンパク質として精製可能である。ノックイン遺伝子の発現産物は、可溶化して精製することが望ましい。精製には、カラム、透析などの通常の精製手段が使用される。ゲノム編集としては、ジンクフィンガー、TALEN、CRISPRなどが挙げられ、TALEN、CRISPRが好ましく、CRISPRがより好ましい。ゲノム編集の方法は次々に開発されてきており、これらに限定されず、今後開発されるゲノム編集方法は全て本発明で使用可能である。
【0028】
ゲノム編集によりノックインを行う場合、薬剤耐性遺伝子を有用な外因性遺伝子とともにゲノムに安定的に組み込み、それによりノックインされた始原生殖細胞を選別するのが好ましい。薬剤耐性遺伝子としては、ネオマイシン耐性遺伝子(Neor)、ハイグロマイシン耐性遺伝子(Hygr)、ピューロマイシン耐性遺伝子(Puror)、ブラストサイジン耐性遺伝子(blastr)、ゼオシン耐性遺伝子(Zeor)などが挙げられ、ネオマイシン耐性遺伝子(Neor)あるいはピューロマイシン耐性遺伝子(Puror)が好ましい。
【0029】
外因性遺伝子を卵管特異的遺伝子座にノックインする場合、卵管特異的遺伝子の翻訳開始点に外因性遺伝子の翻訳開始点を合致させることが好ましい。外因性遺伝子は一本鎖や二本鎖の核酸として始原生殖細胞に導入されれば良く、二本鎖の核酸の場合、プラスミドベクターやBAC(bacterial artificial chromosome)ベクター等の形で導入されれば良い。ノックインにより翻訳開始点を合致させる場合には卵管特異的遺伝子の翻訳開始点周辺の遺伝子配列を外因性遺伝子の翻訳開始点の直前に挿入すれば良い。
卵管特異的遺伝子としてオボアルブミン遺伝子を選択し、オボアルブミン遺伝子プロモーター制御下に外因性遺伝子を導入する場合、好ましい形態として、当該外因性遺伝子の5’端が、オボアルブミンをコードする塩基配列における配列番号1(OVATg1)に示される塩基配列に相当する領域、または、配列番号24(OVATg2)に示される塩基配列に相当する領域に挿入された形態を挙げることができる。より好ましくはオボアルブミンの翻訳開始点に外因性遺伝子の翻訳開始点を挿入すれば良い。
【0030】
外因性遺伝子を卵管特異的遺伝子座にノックインし、このニワトリ個体を得て、卵を得た場合、外因性遺伝子産物を回収するために、卵の卵白を回収することが望ましい。更に効率よく回収するためには卵黄周囲にある濃厚卵白を含む領域を回収することが望ましい。
【0031】
ゲノム編集を行い遺伝子機能をノックアウトにより消失させる場合、上記薬剤耐性遺伝子をゲノム編集を行う際の遺伝子導入時に始原生殖細胞に導入し、薬剤耐性遺伝子に基づき選別することが好ましい。薬剤耐性遺伝子の導入と薬剤選択は安定的でも一過的でも良く、ノックアウトの場合一過的が望ましい。薬剤耐性遺伝子は上記のものなどが挙げられ、ピューロマイシン耐性遺伝子(Puror)あるいはゼオシン耐性遺伝子(Zeor)が好ましい。薬剤耐性遺伝子はジンクフィンガー、TALEN、CRISPRプラスミドと独立した形でも、プラスミドに組み込まれる形でも良く、薬剤耐性遺伝子がゲノム編集の為のプラスミドに組み込まれる形が好ましい。
【0032】
本発明において卵管特異的遺伝子をノックアウトする際、ノックアウトの対象となる卵管特異的遺伝子をコードする塩基配列において、塩基の欠失、置換、または挿入を生じさせることにより、当該卵管特異的遺伝子にフレームシフトやナンセンス変異を起こさせて、タンパク質が発現しないようにすることができる。例えば、CRISPRを用いてノックアウトを行うとき、PAM配列より5’側または3’側の領域近傍に塩基の欠失、置換、または挿入を生じさせることができる。PAM配列より5’側または3’側の領域近傍とは、例えば、PAM配列より約1〜50塩基、好ましくは約1〜15塩基以内とすることができる。
本発明のノックアウト家禽の卵は、一実施の形態として、以下に限定されないが、卵管特異的遺伝子としてオボアルブミン、または、オボムコイドをノックアウトした形態を挙げることができる。卵管特異的遺伝子として、オボアルブミンをノックアウトする際の好ましい一実施の形態としては、配列番号1(OVATg1)に示される塩基配列に相当する領域およびその近傍領域に塩基の欠失、置換、または挿入を生じさせることができる。また、卵管特異的遺伝子として、オボムコイドをノックアウトする際の好ましい一実施の形態としては、配列番号6(OVMTg2)に示される塩基配列に相当する領域およびその近傍領域に塩基の欠失、置換、または挿入を生じさせることができる。
ここで、例えば、「配列番号1(OVATg1)に示される塩基配列に相当する領域」というとき、オボムコイド遺伝子のホモログにおける対応する領域も含み、当業者であれば、対象の家禽により当該塩基配列に相当する領域を把握することができる。
オボムコイドの分泌前蛋白質は、(開始メチオニンを1として)210アミノ酸(210aa)より構成され、1−24aaにシグナルペプチドを有する。また、配列番号1(OVATg1)のPAM配列は、38−39aa部に相当する。よって、本発明のオボムコイド遺伝子をノックアウトした家禽の卵は、一実施の形態において、少なくとも160aa以降を含まない、好ましくは100aa以降を含まない、より好ましくは38aa以降を含まないオボムコイド変異蛋白質を発現する。
また、本発明のオボムコイド遺伝子をノックアウトした家禽の卵は、好ましい実施の形態において、内在性のオボムコイドを実質的に含まない。内在性のオボムコイドを実質的に含まないとは、ノックアウト雌家禽のオボムコイド遺伝子がホモでノックアウトされることにより、当該ノックアウト雌家禽より産生される卵中に、内在性のオボムコイドが消失している状態をいう。
【0033】
1つの実施形態において、本発明の遺伝子改変方法により得られた、遺伝子改変された家禽始原生殖細胞から常法に従い遺伝子改変された家禽を生産することができる。さらに遺伝子改変された家禽から卵(ノックイン及びノックアウト)を得ることが出来る。具体的な手順を以下に示す。
【0034】
遺伝子改変された始原生殖細胞をレシピエント初期胚の胚盤葉、血液中もしくは生殖巣領域に移植する。好ましくは孵卵後2〜3日程度、血流循環開始前後の時期の血流中に数百から数千個程度の細胞を顕微注射により移植する。また、移植前にレシピエントの内在性の始原生殖細胞を薬剤や電離放射線により予め不活化させたり、数を減らしても良い。移植胚を常法に従って孵卵操作を継続し、移植個体を孵化させる。移植、孵化操作は卵殻の変更を含むシステム培養であっても、卵殻の変更を行わない窓開け法でも良い。孵化した個体は通常の飼育により生体(キメラ個体)として性成熟させることが出来る。これを野生型もしくは遺伝子改変個体あるいは遺伝子改変キメラ個体と交配することにより移植細胞由来の遺伝子改変の生じた家禽を後代として生産できる。本発明で得られるゲノム編集された始原生殖細胞は増殖能力が高く、キメラ個体において数多くの受精能力の高い精子或いは卵子になる。この際、効率を上げるために、配偶子のゲノムに含まれる遺伝子改変の頻度を調査し、移植細胞の寄与率を評価した上で交配試験を行ったり、後代の羽毛色による判定を行ったりしてもよい。遺伝子改変された雌始原生殖細胞を移植した雌キメラ家禽と雄始原生殖細胞を移植した雄キメラ家禽交配させることで、ホモ型の遺伝子改変家禽を得ることができる。また、家禽個体内に限らず、将来invitroで始原生殖細胞を生殖細胞に分化させる等の技術が開発された場合には、これを用いた人工受精や顕微授精により遺伝子改変された家禽を生産することができる。
【0035】
図2、図4A、図4B、図16において、OVMTg2のPAM配列は「agg」であるが、ニワトリのオボムコイドのOVMTg2に対応する配列はNCBIのデータベースで2種類あり、OVMTg2の配列は、TTTCCCAACGCTACAGACA(t or a)ggと表記し得る。本発明は、このような多型を全て包含する。
【0036】
本発明の他の実施形態において、ゲノム編集は始原生殖細胞の培養を経由せずに、初期胚に各種ウイルスベクターを感染させて或いはプラスミドベクターをリポソーム複合体として初期胚血液中に注入することで、内在性の始原生殖細胞を遺伝子操作し、キメラ個体及び組換え後代を樹立してもよい。ゲノム編集により得られる始原生殖細胞は遺伝子改変効率が高く、かつ、家禽の組み換え後代や遺伝子改変後代を得るのに十分高い生殖能力を有しており、この実施形態においても有用である。本実施形態においては、始原生殖細胞の培養操作を伴うことなく(内在性の)始原生殖細胞の遺伝子改変が可能である。
【0037】
ゲノム編集による遺伝子操作に用いるウイルスベクターとしては、レトロウイルスベクター、アデノウイルスベクター、アデノ随伴ウイルスベクター、レンチウイルスベクターなどが挙げられる。これらのウイルスベクターは、培養始原生殖細胞あるいは内在性の始原生殖細胞のゲノム編集のいずれにも使用できる。
例えば、内在性の始原生殖細胞をゲノム編集を用いて改変するには、各社から販売されているゲノム編集用ウイルスベクターを用いて任意の標的配列を認識、切断するヌクレアーゼやsgRNAを発現するウイルスベクターを構築し、パッケージングにより感染可能な形態とし、家禽初期胚の胚盤葉、血液や生殖巣領域等始原生殖細胞の存在する場所に投与することで始原生殖細胞におけるゲノム編集を行い、後代に遺伝子改変個体や遺伝子改変産物を得ることが可能である。市販のゲノム編集用ウイルスベクターは国内外の多くの会社が販売しているが、例えばアデノ随伴ベクターを用いたTakara社の「AAVpro(登録商標)CRISPR/Cas9 Helper Free System (AAV2)」やレンチウイルスベクターを用いたSystem Biosciences, LLCの「Lentiviral CRISPR/ Cas9 System」などが挙げられる。遺伝子改変がノックインの場合、ゲノム編集に必要なウイルスベクターとノックインされる遺伝子を含むウイルスベクター、プラスミド、Bacベクター、一本鎖や二本鎖のDNA等を併用することができる。
【0038】
また、ウイルスベクターを使わない、あるいは併用する形態のゲノム編集用プラスミドやドナーコンストラクトをリポソーム複合体など細胞膜を透過可能な形態にし、家禽初期胚の胚盤葉、血液や生殖巣領域等始原生殖細胞の存在する場所に投与することで始原生殖細胞におけるゲノム編集を行い、後代に遺伝子改変個体や遺伝子改変産物を得ることが可能である。
【0039】
上記方法により得られる本発明のノックイン家禽の卵は、外因性遺伝子の発現産物が卵内で安定高発現する。ここで、外因性遺伝子の発現産物が卵内で安定高発現するとは、異なる個体由来でも卵1個あたり約1mg以上の外因性遺伝子がコードするタンパク質を発現することをいう。好ましくは卵1個あたり約10mg以上、より好ましくは卵1個あたり約100mg以上の外因性タンパク質を発現する形態を挙げることができる。また、例えば、ニワトリの卵管特異的遺伝子の遺伝子座に外因性遺伝子をノックインした場合、ノックイン雌鶏の卵において認められる外因性遺伝子産物(蛋白質)の発現は、濃厚卵白において濃度が5mg/mlと従来のノックインに依らないランダムな遺伝子導入に比べて遥かに高濃度であると共に、外因性遺伝子の挿入位置が均一であるため個体間や同一個体における発現のばらつきが小さい。更に、ニワトリ個体で実際に発現する遺伝子の翻訳開始点にノックインする技術を用いていることから、G2世代以降でサイレンシングなどの影響を受け発現低下することがない。
【0040】
本法による卵管特異的遺伝子の遺伝子座に外因性遺伝子をノックインした場合、ノックイン雌鶏の卵において認められる外因性遺伝子産物(蛋白質)の分布は水溶性卵白に比べて濃厚卵白での濃度が高い。このため、濃厚卵白を含む領域を回収することで効率よく外因性遺伝子産物を回収することが出来る。
本法により得られる卵白アレルゲン遺伝子のホモノックアウトニワトリを飼養し、卵を得ることで卵白アレルゲン蛋白質を欠損した卵を得ることができる。このような卵は低アレルゲン性であることが想定される。非特許文献4ではヘテロ型のオボアルブミンノックアウトニワトリの例が示されているが、ホモノックアウトニワトリが得られるか、更にホモノックアウトニワトリから卵が得られるかについては当時の技術常識を総合しても予見できないし、当該文献からも予見できない。
【実施例】
【0041】
以下、本発明を実施例に基づきより詳細に説明する。
〈製造例1〉
ニワトリ雄始原生殖細胞を用いたゲノム編集
(製造例1−1)
オボアルブミン(OVA)遺伝子座へのノックインおよびオボムコイド(OVM)ノックアウトのための遺伝子構築
ニワトリ雄始原生殖細胞株を用い、オボアルブミンならびにオボムコイド遺伝子を標的としてCRISPR法の適用を行った。図1(オボアルブミン)、図2(オボムコイド)に示すようにそれぞれOVATg1、OVMTg2の標的としての適性を検討した。
図1に示すオボアルブミン遺伝子の標的配列を標的とし、CRISPR用プラスミドを構築した。
まず、配列番号1(OVATg1)を標的として配列番号2,配列番号3で示されるオリゴDNAを合成し、T4 Polynucleotide Kinaseを用いて5’末端をリン酸化した後、両者の混合液を98℃まで加熱し、室温までゆるやかに冷却することでアニールした。このDNA断片をプラスミドpx330(AddGENE,米国)のNotI部位に配列番号4のピューロマイシン耐性遺伝子ユニットを挿入したプラスミドpx330−PurorのBbsl切断部位に挿入した(px330−Puror−OVATg1)。さらにpx330−Puror−OVATg1のピューロマイシン耐性遺伝子ユニットを配列番号5で示すネオマイシン耐性遺伝子ユニットに置き換えたプラスミドを構築した(px330−Neor−OVATg1)。
図2に示すオボムコイド遺伝子の標的配列を標的とし、CRISPR用プラスミドを構築した。配列番号6(OVMTg2)を標的として配列番号7と配列番号8で示されるオリゴDNAを合成し、リン酸化後、アニールし、プラスミドpx330−PurorのBbsl切断部位に挿入した(px330−Puror−OVMTg2)。
【0042】
(製造例1−2)
オボアルブミン、オボムコイド遺伝子ノックアウト
横斑プリマスロック雄胚血液中より採取し、株化したニワトリ雄始原生殖細胞(非特許文献3に準拠して調製)に上述の遺伝子(プラスミド)を一過的に導入した。1×105〜5×105個の雄始原生殖細胞株をPBSで洗浄し、OPTI−MEMに懸濁後、3μlのリポフェクタミン2000(Life Technologies, 米国)を用いて1.6μgのpx330−Neor−OVATg1を遺伝子導入した。具体的には、リポフェクタミン2000とプラスミドを80μl OPTI−MEM中で混合し、雄始原生殖細胞株と混合後室温で5分程度静置し、その後抗生物質を含まない培地を500μl添加し、37℃で1〜4時間程度静置した上でフィーダー細胞上に播種した。遺伝子導入後2〜4日の間、ネオマイシン(G418 二硫酸塩、ナカライテスク、日本)終濃度0.5mg/mlで添加し、これを洗浄除去した後に1〜2週間の培養を行った。培養後に細胞を回収し、ゲノムDNAを抽出後、配列番号9,配列番号10で示されるオリゴDNAプライマーを用いたPCR法によりオボアルブミン遺伝子の一部領域を増幅し、TAベクター(pGEM−T Easy, Promega, 米国)にサブクローンし、配列番号1(OVATg1)を含む領域のゲノム塩基配列を解析した。図3に示すように開始コドンの欠失、置換を含む変異を確認した。
次に、オボムコイド遺伝子を標的とした同様の解析を行った。上述と同様に1×105〜5×105個の雄始原生殖細胞株にリポフェクタミン2000を用いてpx330−Puror−OVMTg2を1.6μg遺伝子導入し、導入後2〜4日の間、ピューロマイシンを終濃度1μg/mlで添加した。ピューロマイシンを洗浄除去した後に1〜2週間の培養を行ない、細胞を回収し、ゲノムDNAを抽出後、配列番号11,配列番号12で示されるオリゴDNAプライマーを用いたPCR法によりオボムコイド遺伝子の一部領域を増幅し、TAベクターにサブクローンし、配列番号6(OVMTg2)を含む領域のゲノム塩基配列を解析した。解析した23クローン中21クローン(91%)においてオボムコイド遺伝子の配列番号6(OVMTg2)を含む領域で遺伝子の欠失が認められた。一方、対照群として薬剤選択を行わなかったものの遺伝子欠損は24クローン中0個(0%)であった。OVMTg2を含む領域に認められた遺伝子変異の例を図4Aに示す。これらのことは家禽始原生殖細胞の遺伝子をゲノム編集する上で、薬剤耐性遺伝子導入と薬剤による一過的選択が変異の効率を顕著に上昇しうること、特にピューロマイシン耐性遺伝子とピューロマイシンによる薬剤選択で高い変異効率が得られることを示している。
【0043】
(製造例1−3)
ゲノム編集ニワトリの樹立
(製造例1−2)に記載した要領で横斑プリマスロック種始原生殖細胞にpx330−Puror−OVMTg2を遺伝子導入し、薬剤選択した細胞を培養し、白色レグホン種2.5日胚(レシピエント胚)の血液中に顕微注射により移植を行った。移植に先立ち、レシピエント胚内在性の始原生殖細胞数を減少させる目的で孵卵操作前の受精卵に電離放射線を5Gyまたは6Gy照射した。電離放射線照射はガンマセル40(カナダ原子力公社)を用いたガンマ線照射により行った。
【0044】
孵卵2.5日後、卵の突端側に直径2cm程度の窓を開けて胚を露呈し、ハンバーガーハミルトンステージ13から15までのレシピエント胚血液中に約1000〜5000個の薬剤選択済み細胞(1〜2μlのPBSに懸濁)を微小ガラス針を用いて移植した。窓をセロハンテープで密閉後、温度38.5℃、湿度60〜80%で培養し孵化させた(キメラヒヨコ(GO))。8羽の雄キメラヒヨコを性成熟させ、精液を採取した。精液よりゲノムDNAを抽出後、配列番号11,配列番号12で示されるオリゴDNAプライマーを用いたPCR法によりオボムコイド遺伝子の一部領域を増幅し、TAベクターにサブクローンし、配列番号6(OVMTg2)を含む領域のゲノム塩基配列を解析した。高頻度に変異の見られたキメラニワトリ#372,#376(いずれもサブクローンした11クローン中10クローンにオボムコイド遺伝子の変異が見られた)を野生型の横斑プリマスロック種雌と交配させ、それぞれの後代19羽中に11羽、14羽中に6羽のオボムコイド変異ニワトリ(ヒヨコ)を見出した。オボムコイド遺伝子変異の一例を図4B上段に示す。この個体ではオボムコイドタンパク質のシグナルペプチド直下部より変異を起こす5塩基の欠損が認められ、片アレルにオボムコイド遺伝子のフレームシフト変異を有している。また、オボムコイドゲノムの標的領域を中心に認められる代表的な変異(遺伝子欠損)の例を図4B下段に示した。ここに代表されるようなオボムコイドタンパク質のシグナルペプチド直下部よりフレームシフト変異を生じるオボムコイドヘテロノックアウトの雌雄個体を複数得ており、これら個体を性成熟後交配することでオボムコイドのホモノックアウトニワトリ作出が可能である。
【0045】
〈製造例2〉
オボアルブミン遺伝子座へのヒトインターフェロン遺伝子ノックイン
(製造例2−1)
始原生殖細胞樹立へのノックインとノックインキメラニワトリの樹立
オボアルブミン遺伝子の翻訳開始点に外因性遺伝子(ヒトインターフェロンβ;IFNβ)を挿入することを目的とし、配列番号13に示されるヒトインターフェロンβ遺伝子を導入したドナーコンストラクト(IFNβドナーコンストラクト)を作製した。このドナーコンストラクトはオボアルブミン翻訳開始点の5’側約2.8kb、ヒトインターフェロンβ遺伝子、薬剤耐性遺伝子ユニット(PGK−Puror)、オボアルブミン翻訳開始点の3’側約3.0kbから構成される。このドナーコンストラクトをプラスミドpBlueScriptII(SK+))(Stratagene,米国 現Agilenttechnologies)に挿入しpBS−IFNβドナーとした。製造例1と同様に1×105〜5×105個の始原生殖細胞株にリポフェクタミン2000を用いてpx330−Neor−OVATg1を0.8μg、pBS− IFNβドナーを0.8μg同時に遺伝子導入し、導入後3日以降、ピューロマイシンを終濃度1μg/mlで添加した。適宜培地交換を行い、終濃度1μg/mlのピューロマイシン存在下で増殖する細胞を回収し、ゲノムDNAを調製した。ドナーコンストラクトがオボアルブミン遺伝子座にノックインされていることをゲノムPCRにより確認した。5’領域についてドナーコンストラクトの外因性遺伝子とドナーコンストラクトに含まれないオボアルブミンの5’領域に対するプライマーを用いたPCRを以下のように行った。配列番号14に示されるインターフェロンβに対するアンチセンスプライマーと配列番号15に示すオボアルブミン翻訳開始点の5’側約3.0kbの領域に対するセンスプライマーを用いてPCRを行い、さらに増幅産物に対して配列番号16に示すインターフェロンβに対するアンチセンスプライマーと配列番号17に示すオボアルブミン翻訳開始点の5’側約2.85kbでドナーコンストラクトには含まれない領域に対するセンスプライマーを用いてPCRを行った(nested PCR)。図5Aに示すようにpx330−Neor−OVATg1と共にドナーコンストラクトを導入し、薬剤選択した始原生殖細胞(ノックインPGCs)由来ゲノムを鋳型とした場合、ドナーコンストラクトが挿入された際に期待される約2.9kの位置に増幅産物が認められるのに対し、対照の遺伝子導入を行っていない始原生殖細胞由来ゲノム(対照PGCs)を鋳型とした場合、増幅産物は認められない。
【0046】
同様に、3’領域についてについてドナーコンストラクトの外因性遺伝子とドナーコンストラクトに含まれないオボアルブミンの3’領域に対するプライマーを用いたゲノムPCRにより確認した。配列番号18に示す薬剤耐性遺伝子ユニットに対するセンスプライマーと配列番号19に示すオボアルブミン翻訳開始点の3’側約3.4kbの領域に対するアンチセンスプライマーを用いてPCRを行い、さらに増幅産物に対して配列番号20に示す薬剤耐性遺伝子ユニットに対するセンスプライマーと配列番号21に示すオボアルブミン翻訳開始点の3’側約3.2kbでドナーコンストラクトには含まれない領域に対するセンスプライマーを用いてPCRを行った(nested PCR)。図5Aに示すようにpx330−Neor−OVATg1と共にドナーコンストラクトを導入し、薬剤選択した始原生殖細胞(ノックインPGCs)由来ゲノムを鋳型とした場合、ドナーコンストラクトが挿入された際に期待される約3.4kの位置に増幅産物が認められるのに対し、対照の遺伝子導入を行っていない始原生殖細胞(対照PGCs)由来ゲノムを鋳型とした場合、増幅産物は認められない。以上のことから、薬剤選択された細胞集団の中に外因性遺伝子部分を含むドナーコンストラクトがオボアルブミン遺伝子座にノックインされた細胞が存在すると考えられる。
【0047】
このIFNβドナーコンストラクトがノックインされた細胞を含む始原生殖細胞を、(製造例1−3)と同じ手法によりレシピエント胚に移植後孵化させ、4羽の雄キメラニワトリを得た(#411〜#414)。これらより精液を採取し、ゲノムDNAを採取後、配列番号18と配列番号19のプライマー(オボアルブミン遺伝子にノックインされたインターフェロンの3’側を増幅)、配列番号15と配列番号14のプライマー(オボアルブミン遺伝子にノックインされたインターフェロンの5’側を増幅)、配列番号15と配列番号22のプライマー(ノックインされていないオボアルブミンを増幅)を用いてそれぞれPCRを行った(図5B)。キメラニワトリ#411と#412においてオボアルブミン遺伝子座へのインターフェロンノックインを明瞭に示すシグナルが3’側、5’側で共に認められ、特に#411は移植した親株と遜色のないシグナル強度で認められることから、精子中に親株と同程度インターフェロンがノックインされた細胞が存在すると考えられる。
【0048】
キメラニワトリ#411と#412を雌野生型ニワトリ(横斑プリマスロック種)と交配し、それぞれ28羽の後代、19羽の後代を得た。この後代より羽軸を採取し、ゲノムDNAを採取後、上述と同様に配列番号18と配列番号19のプライマー(オボアルブミン遺伝子にノックインされたインターフェロンの3’側を増幅)、配列番号15と配列番号14のプライマー(オボアルブミン遺伝子にノックインされたインターフェロンの5’側を増幅)、配列番号15と配列番号22のプライマー(ノックインされていないオボアルブミンを増幅)を用いてそれぞれPCRを行った。また、野生型の羽軸由来のゲノム(ネガティブコントロール(NC))、および移植したインターフェロンドナーベクターノックイン始原生殖細胞由来のゲノム(ポジティブコントロール(PC))を用いて同じPCRを行った。#411由来後代28羽のうち8羽と#412由来後代19羽のうち5羽において、それぞれポジティブコントロールと同様のオボアルブミン遺伝子座へのインターフェロンノックインを明瞭に示すシグナルが3’側、5’側で共に認められた。#411由来後代(雌)と#412由来後代(雌)のPCR産物電気泳動像を図5Cにそれぞれ示す。このことより、これらの後代雌ニワトリではオボアルブミン遺伝子座にインターフェロンドナーベクターがノックインされていると判断される。
【0049】
(製造例2−2)
ノックイン効率の改善
遺伝子ノックインの効率改善について検討を行った。まず、上述製造例2−1のインターフェロンβドナーコンストラクトの薬剤耐性ユニットをPGK−PurorからSV40Pe−Neor(配列番号23)に置換したIFNβ−Neoドナーコンストラクト〈配列番号33〉を作製した。このドナーコンストラクトはオボアルブミン翻訳開始点の5’側約2.8kb、ヒトインターフェロンβ遺伝子、薬剤耐性遺伝子ユニット(SV40Pe−Neor)、オボアルブミン翻訳開始点の3’側約3.0kbから構成される。このドナーコンストラクトをプラスミドpBlue Scriptll(SK+)に挿入しpBS−IFNβ−Neoドナーとした。また、図6Aに示すようにOVATg1と一部重なるオボアルブミンの標的配列OVATg2(配列番号24)を標的とし、CRISPR用プラスミドを構築した。配列番号25と配列番号26でそれぞれ示されるオリゴDNAを合成し、製造例1−1と同様にリン酸化後、アニールし、DNA断片をpx330のBbsI切断部位に挿入するとともに、NotI部位に配列番号4のピューロマイシン耐性ユニットを挿入したプラスミドpx330−Puror−OVATg2を構築した。約5×105個の始原生殖細胞株を調製し、3分割した後に、製造例2−1と同様にリポフェクタミン2000を用いてpx330−Neor−OVATg1を0.8μg、pBS−IFNβドナー(ピューロマイシン耐性遺伝子ユニットを持つ)を0.8μg(導入群1)もしくはpx330−Puror−OVATg1を0.8μg、pBS−IFNβ−Neoドナーを0.8μg(導入群2)もしくはpx330−Puror−OVATg2を0.8μg、pBS−IFNβ−Neoドナーを0.8μg(導入群3)それぞれ同時に遺伝子導入し、(導入群1)は製造例2−1同様導入後3日以降、ピューロマイシンを終濃度1μg/mlで添加した。一方、(導入群2)と(導入群3)は製造例1−2と同様に遺伝子導入後2〜4日の間、終濃度1μg/mlのビューロマイシン存在下で培養し、洗浄後、終濃度0.5mg/mlのネオマイシンを添加し培養を行った。導入後24日後に各導入群の細胞数をそれぞれ計測した所、導入群1の2×104に対し、導入群2と3では1×105の薬剤耐性細胞が認められた。また、それぞれの群より細胞を回収し、ゲノムDNAを調製後、製造例2−1と同様に配列番号18と配列番号19のプライマー(オボアルブミン遺伝子にノックインされたインターフェロンの3’側を増幅)、配列番号15と配列番号14のプライマー(オボアルブミン遺伝子にノックインされたインターフェロンの3’側を増幅)、配列番号15と配列番号22のプライマー(ノックインされていないオボアルブミンを増幅)を用いてそれぞれPCRを行った。なお、導入群2と3については配列番号18のプライマーの代わりに配列番号71のプライマーを用いた(図6B)。導入群1と2との間でPCRシグナル強度比の大きな違いを認めないことから、導入群2のピューロマイシンで短期間選択後、ネオマイシン選択する方法のほうが迅速に目的細胞を調製可能と考えられる。また、導入群3は導入群2と比較してノックインされていないオボアルブミンが殆ど認められないことから、より効率の良いノックインが起こっていると考えられる。以上より、OVATg2配列を標的とし、CRISPRコンストラクトにピューロマイシン耐性遺伝子をドナーコンストラクトにネオマイシン耐性遺伝子をそれぞれ挿入し、始原生殖細胞に導入後一過的にピューロマイシンで選択し、その後ネオマイシンで選択を行うことで迅速かつ高効率に外因性遺伝子のオボアルブミン遺伝子座へのノックインが可能になると考えられる。
【0050】
〈製造例3〉
オボアルブミン遺伝子座へのヒト抗体遺伝子ノックイン
上記製造例2−1のインターフェロンβドナーコンストラクトのヒトインターフェロンβの代わりに配列番号27に示されるヒト免疫グロブリン遺伝子を導入したドナーコンストラクト(免疫グロブリンドナーコンストラクト)を作製した。このドナーコンストラクトはオボアルブミン翻訳開始点の5’側約2.8kbの下流に卵白リゾチームシグナルペプチド、ヒト免疫グロブリン重鎖、furinタンパク質切断標的配列、2A自己プロセッシング性ペプチド、卵白リゾチームシグナルペプチド、ヒト免疫グロブリン軽鎖遺伝子をそれぞれコードする遺伝子を連結して配置し、薬剤耐性遺伝子ユニット(PGK−Puror)、オボアルブミン翻訳開始点の3’側約3.0kbから構成されている。このドナーコンストラクトが転写、翻訳されることで免疫グロブリンの重鎖と軽鎖からなる抗体タンパク質を発現する。
【0051】
プラスミドpBlue Scriptll(SK+)に免疫グロブリンドナーコンストラクトを挿入しpBS−免疫グロブリンドナー(pBS− IgG(Hc+Lc)ドナー)とした。上記pBS−IFNβドナーと同様の手法により雄ニワトリ始原生殖細胞にノックイン後ピューロマイシンで選択し、選択された細胞のゲノムを鋳型としてPCRを行なった。5’側は配列番号15のプライマーと配列番号28に示される卵白リゾチームシグナルペプチドに対するアンチセンスプライマーによるPCRの後、増幅産物に対して配列番号17のプライマーと配列番号29に示す卵白リゾチームシグナルペプチドに対するアンチセンスプライマーを用いてPCRを行った(nested PCR)。3’側は上記EGFPドナーやpBS−IFNβドナーのノックイン時と同様に配列番号18と配列番号19に示すプライマーを用いたPCRの後、増幅産物に対して配列番号20と配列番号21に示すプライマーを用いてnested PCRを行った。図7に示すように、免疫グロブリンドナーを用いた場合でも始原生殖細胞のオボアルブミン遺伝子へのノックインが認められた。
更に製造例2−2と同様に免疫グロブリンドナーコンストラクトの薬剤耐性ユニットをPGK−PurorからSV40Pe−Neor(配列番号23)に置換した免疫グロブリン−Neoドナーコンストラクト(配列番号30)を作製した。このドナーコンストラクトはオボアルブミン翻訳開始点の5’側約2.8kbの下流に卵白リゾチームシグナルペプチド、ヒト免疫グロブリン重鎖、furinタンパク質切断標的配列、2A自己プロセッシング性ペプチド、卵白リゾチームシグナルペプチド、ヒト免疫グロブリン軽鎖遺伝子をそれぞれコードする遺伝子を連結して配置し、薬剤耐性遺伝子ユニット(SV40Pe−Neor)、オボアルブミン翻訳開始点の3’側約3.0kbから構成されている。このドナーコンストラクトをプラスミドpBlue Scriptll(SK+)に挿入しpBS−免疫グロブリン−Neoドナーとした。製造例1−2と同様の方法でpx330−Puror−OVATg2を0.8μgとpBS−免疫グロブリン−Neoドナー0.8μgを約2×105個の始原生殖細胞株に3μlのリポフェクタミン2000を用いて遺伝子導入し、遺伝子導入後2〜4日の間、終濃度1μg/mlのピューロマイシン存在下で培養し、洗浄後、終濃度0.5mg/mlのネオマイシンを添加し培養を行った。3週間程度の培養の後、得られた免疫グロブリンノックイン細胞を含む細胞集団を(製造例1−3)と同じ手法によりレシピエント胚に移植後孵化させ免疫グロブリンノックイン生殖巣キメラニワトリを樹立した。後代にオボアルブミン遺伝子座にヒト免疫グロブリン遺伝子がノックインされたニワトリが得られ、卵白にヒト免疫グロブリンの重鎖と軽鎖からなる抗体タンパク質を発現する。
【0052】
〈製造例4〉
オボアルブミン遺伝子座へのヒトコラーゲン遺伝子ノックイン
上記製造例2−1のインターフェロンβドナーコンストラクトのヒトインターフェロンβの代わりに配列番号31に示されるヒトI型コラーゲン遺伝子を導入したドナーコンストラクト(コラーゲンドナーコンストラクト)を作製した。このドナーコンストラクトはオボアルブミン翻訳開始点の5’側約2.8kbの下流に卵白リゾチームシグナルペプチド、ヒトI型コラーゲンα1鎖(COLLAGEN1A1)、furinタンパク質切断標的配列、2A自己プロセッシング性ペプチド、卵白リゾチームシグナルペプチド、ヒトI型コラーゲンα2鎖(COLLAGEN1A2)遺伝子をそれぞれコードする遺伝子を連結して配置し、薬剤耐性遺伝子ユニット(PGK−Puror)、オボアルブミン翻訳開始点の3’側約3.0kbから構成されている。このドナーコンストラクトが転写、翻訳されることでヒトI型コラーゲンα1鎖とα2鎖からなるI型コラーゲンタンパク質を発現する。
プラスミドpBlue Scriptll(SK+)にコラーゲンドナ−コンストラクトを挿入しpBS−COL1(A1+A2)ドナーとした。上記ppBS−IFNβドナー、pBS−lgG(Hc+Lc)ドナーと同様の手法によりpBS−COL1(A1+A2)ドナーを雄ニワトリ始原生殖細胞にノックイン後ピューロマイシンで選択し、選択された細胞のゲノムを鋳型としてPCRを行なった。5’側はpBS−IgG(Hc+Lc)ドナーと同様、配列番号15のプライマーと配列番号28に示される卵白リゾチームシグナルペプチドに対するアンチセンスプライマーによるPCRの後、増幅産物に対して配列番号17のプライマーと配列番号29に示す卵白リゾチームシグナルペプチドに対するアンチセンスプライマーを用いてPCRを行った(nested PCR)。3’側は上記pBS−IFNβドナー、pBS−lgG(Hc+Lc)ドナーのノックイン時と同様に配列番号18と配列番号19に示すプライマーを用いたPCRの後、増幅産物に対して配列番号20と配列番号21に示すプライマーを用いてnested PCRを行った。図8に示すように、コラーゲンドナーを用いた場合でも始原生殖細胞のオボアルブミン遺伝子へのノックインが認められた。
【0053】
更に製造例2−2と同様にコラーゲンドナーコンストラクトの薬剤耐性ユニットをPGK−PurorからSV40Pe−Neor(配列番号23)に置換したコラーゲン−Neoドナーコンストラクト(配列番号32)を作製した。このドナーコンストラクトはオボアルブミン翻訳開始点の5’側約2.8kbの下流に卵白リゾチームシグナルペプチド、ヒトI型コラーゲンα1鎖(COLLAGEN1A1)、furinタンパク質切断標的配列、2A自己プロセッシング性ペプチド、卵白リゾチームシグナルペプチド、ヒトI型コラーゲンα2鎖(COLLAGEN1A2)遺伝子をそれぞれコードする遺伝子を連結して配置し、薬剤耐性遺伝子ユニット(SV40Pe−Neor)、オボアルブミン翻訳開始点の3’側約3.0kbから構成されている。このドナーコンストラクトをプラスミドpBlue ScriptII(SK+)に挿入しpBS−コラーゲン−Neoドナーとした。製造例1−2と同様の方法でpx330−Puror−OVATg2を0.8μgとpBS−コラーゲン−Neoドナー0.8μgを約2×105個の始原生殖細胞株に3μlのリポフェクタミン2000を用いて遺伝子導入し、遺伝子導入後2〜4日の間、終濃度1μg/mlのピューロマイシン存在下で培養し、洗浄後、終濃度0.5mg/mlのネオマイシンを添加し培養を行った。3週間程度の培養の後、得られたコラーゲンノックイン細胞を含む細胞集団を(製造例1−3)と同じ手法によりレシピエント胚に移植後孵化させ免疫グロブリンノックイン生殖巣キメラニワトリを樹立した。後代にオボアルブミン遺伝子座にヒト免疫グロブリン遺伝子がノックインされたニワトリが得られ、卵白にヒトI型コラーゲンのα1とα2からなる複合体タンパク質を発現する。
【0054】
〈実施例1〉
上記製造例2−1に記されたようにオボアルブミン遺伝子座の翻訳開始点にヒトインターフェロンβドナーベクターがノックインされた雌ニワトリ、雄ニワトリを樹立した。
【0055】
(1)ノックインニワトリとノックイン卵の性状
樹立したノックインニワトリは、発生異常や顕著な病態を示すこと無く、性成熟に達し、ノックイン雌ニワトリは産卵を始めた。卵殻を割り、内容物を検証した所、卵黄の周囲に白濁した濃厚卵白が確認された。一方粘性の低い水溶性卵白は野生型の卵と同様に存在した。典型的な割卵像を図9に示す。
【0056】
(2)インターフェロンの同定、濃厚卵白に多い可能性
次に、卵白におけるヒトインターフェロンβの存在について検証を行った。
濃厚卵白、水溶性卵白をそれぞれスポイトを用いて回収し、等量のサンプルバッファー
(0.125M Tris pH6.8,10%2−ME,4%SDS,10%グリセロール 0.1%BPB)を加え、これをそれぞれ10倍ずつ計3段階に希釈し、5−20%のアクリルアミドゲルで電気泳動により分離を行ったのちにPVDF膜に転写し、スキムミルクで膜への抗体分子の非特異吸着をブロッキングした後、1000倍希釈した抗ヒトインターフェロンβ抗体(abcam ab85803 ウサギポリクローナル)を一次抗体、1000倍希釈した抗ウサギHRP結合抗体(GE ヘルスケアNA934V)を二次抗体としたウエスタンブロットを行った。結果を図10に示す。
【0057】
リコンビナントの精製ヒトインターフェロンβ(Wako rhIFN−β)と同位置の約30kDaの場所に抗体で認識されるバンドが認められた。また、このバンドは野生型の卵では全く検出されなかった。図10各レーンの1,1/10,1/100は相対泳動量を示しており、同じ数字であれば同量の卵白液が泳動されている。興味深いことに、水溶性卵白では微量のインターフェロンしか同定されなかった。
このことは濃厚卵白に遺伝子ノックインによる組換え発現蛋白質が比較的多く含まれる可能性を示唆している。
【0058】
(3)濃厚卵白にインターフェロン蛋白質が多く認められる(約5mg/mlと推定)
次に、野生型卵(NC: negative control)、2つのヒトインターフェロンβノックインニワトリ由来卵(KI egg1および2)の水溶性卵白と濃厚卵白を採取し、等量ずつ計2段階の希釈をして5−20%アクリルアミドゲルで電気泳動し、クマシーブリリアントブルー染色(ナカライ CBB ステインワン)により卵白に含まれる蛋白質の可視化を行った。結果を図11に示す。先のウエスタンブロットの結果と同様、約30kDaの位置に野生型卵には存在せず、2つのノックイン卵に存在する明瞭なバンドが認められ、ヒトインターフェロンβであることが分かる。また、ウエスタンブロットの結果と同様に、このヒトインターフェロンβのバンドは水溶性卵白を電気泳動した場合には殆ど認められない。CBB染色したバンドのシグナルを比較すると、オボトランスフェリンやオボアルブミンなど他の卵白成分は水溶性卵白と濃厚卵白では量が殆ど変わらないにも関わらず、ヒトインターフェロンβ量が大きく異なることから、オボアルブミン遺伝子座にノックインにより発現させたヒトインターフェロンβは濃厚卵白に優位に集積することが明らかとなった。
【0059】
更に、CBB染色像を解析することで、卵白に含まれるヒトインターフェロンの濃度が推定可能である。CBB染色は蛋白量にほぼ比例して青色を呈する。相対量1のヒトインターフェロンβのシグナル濃度をNIH Imageを用いて定量し、相対量1/10のオボアルブミンと比較すると1.01:1となる。オボアルブミンは卵白蛋白質のほぼ半分を占め、約50mg/mlの濃度であるため、ヒトインターフェロンβは約5mg/ml程度とみなされる。
【0060】
本法による発現では濃度が5mg/mlと遥かに高濃度であると共に、外来遺伝子の挿入位置が均一であるため個体間や同一個体における発現のばらつきが小さい。更に、ニワトリ個体で実際に発現する遺伝子の翻訳開始点にノックインする技術を用いていることから、G2世代以降でサイレンシングなどの影響を受け発現低下することがない。図12は一週間にわたる3回の採卵(day1,day4,day7)による各卵白中のインターフェロンを比較したものであるが、NIH Imageで定量比較すると1:0.92:0.96となり、濃厚卵白におけるインターフェロン濃度のばらつきは殆ど認められない。また、このノックイン卵は採卵後摂氏18℃で保存したものを同時に割卵したものであるが、外来蛋白質であるインターフェロンが1週間に渡り、顕著な分解等を受けること無く安定して卵白中に存在することを示している。
【0061】
(4)異なった固体由来卵におけるインターフェロンの発現(インターフェロン発現の安定性)。
初卵を産んでから3ヶ月後の4羽のインターフェロンノックイン雌より卵を得て割卵した(図23)。いずれの卵においても濃厚卵白の白濁が認められた。また、5羽のニワトリ(#584,#766,#714,#645,#640)から卵を得てそれぞれの濃厚卵白を上記(3)と同様に電気泳動、CBB染色を行った。全ての卵でヒトインターフェロンのバンドを認めた(図17)。NIH imageで定量比較すると#584,#766,#714,#645,#640のインターフェロン濃度は1.0:1.0:0.94:0.91:0.89となる。これは、非特許文献1でみられる個体間の分泌濃度のゆらぎ(5μg/ml−100μg/ml)と比べると最大−最小の濃度差11%以内と極めて安定しており、個体間で差がないことは複数の組換えニワトリを用いて組換え蛋白質を大量に得ようとする場合に有利な点である。
【0062】
〈実施例2〉
(1)濃厚卵白からの効率のよいインターフェロン抽出の試み(可溶化処理が可能)
濃厚卵白に高濃度のインターフェロンβが存在することが分かったが、このインターフェロンβを一般的に活用するには卵白から抽出され、精製されることが望ましい。精製技術には分子量や化学的性状に基づいた様々なカラム処理などがあるが、カラム処理を行うには対象となる蛋白質が水溶液となっていることが望ましい。水溶液と不溶物は遠心操作により分離可能である。そこで、濃厚卵白中のインターフェロンが水溶液に含まれるか、不溶物なのか検討した。
濃厚卵白を200μl採取し、20k×Gで15分遠心すると白色の沈殿画分と液体の画分に分離が可能である(図13チューブ1)。液体の画分をアクリルアミドゲル電気泳動するとヒトインターフェロンβは含まれるものの(図14レーン1)、同量の分離前濃厚卵白(図14レーン0)よりは明らかに量が少ない。したがって、遠心により生ずる白色沈殿部に多くのインターフェロンが含まれると考えられた。そこで、白色沈殿を減らし、インターフェロンの収量を増加させる幾つかの試みを行った。図13ではそれぞれのチューブに濃厚卵白液200μlを加え、3Mの飽和アルギニン溶液4倍量(800μl)を加え転倒混和したもの(チューブ2)、3Mの飽和アルギニン溶液4倍量(800μl)を加え超音波破砕を行ったもの(チューブ3)、少量のアルギニン(20mg)を加え転倒混和したのちPBSにより1mlにしたもの(チューブ4)、少量のアルギニン塩酸塩(20mg)を加え転倒混和したのちPBSにより1mlにしたもの(チューブ5)、PBSにより1mlにし、超音波破砕を行ったもの(チューブ6)、飽和量以上のアルギニン塩酸塩(200mg)を加えて転倒混和したもの(チューブ7)、3Mの飽和アルギニン溶液2倍量(400μl)を加え超音波破砕を行ったもの(チューブ8)、少量のアルギニン塩酸塩(20mg)を加え超音波破砕したもの(チューブ9)、少量の食塩(40mg)を加え超音波破砕したもの(チューブ10)などである。20k×Gで15分遠心すると白色沈殿は認められるが、いずれも無処理(チューブ1)の場合より減少しており、特に超音波破砕を行ったもののうちチューブ3,6,8,9で顕著に減少していた。
【0063】
上清を回収し、大元の濃厚卵白に対する泳動量が均一になるようにサンプル調製を行い、アクリルアミドゲルで電気泳動をおこなった(図14)。図14のレーン番号は図13のチューブ番号に対応しており、レーン0は濃厚卵白を分離せずに同量泳動したものである。レーン2からレーン10は、量の多少はあるものの、いずれも無処理(レーン1)のものより多くのインターフェロンβを含んでいた。特に、3Mの飽和アルギニン溶液4倍量を加え超音波破砕を行ったもの(レーン3)が多くのインターフェロンβを含んでいた。これらのことは超音波破砕のような物理的処理やアルギニン、アルギニンバッファー添加のような化学的処理(より限定的には不溶蛋白質の可溶化処理)によって濃厚卵白より水溶性の画分に抽出されるインターフェロンβの量が増大することを示している。チューブ3の3Mの飽和アルギニン溶液4倍量を加え超音波破砕を行ったものを20k×Gで15分間遠心し、上清を回収したのちPBS中で一昼夜透析を行った(以下濃厚卵白粗精製物と呼ぶ)。濃厚卵白粗精製物は透明であり析出物は認められず、一連の処理により白濁部から上清に移行したものは可溶化されたと考えられる。
【0064】
(2)鶏卵に生産したインターフェロンの活性
バイオアッセイにより、水溶性卵白、濃厚卵白、濃厚卵白粗精製物のインターフェロン活性について検討した。HEK−blue IFN−α/β(lnvivogen)は培地にヒトインターフェロンβを添加することでアルカリフォスファターゼを分泌する培養細胞であり、アルカリフォスファターゼの基質液(Quanti−Blue;Invivogen)に反応後の培地を加え、基質液の変化(Quanti−Blueの場合赤色から青色への変色)を見る事でヒトインターフェロンβの活性の有無を見ることが出来る。HEK−blue IFN−α/βの培養液中にヒトインターフェロンノックイン卵由来の水溶性卵白、濃厚卵白(20k×Gで15分遠心後の上清)、濃厚卵白粗精製物(チューブ3由来))を添加した。また、ネガティブコントロールとして野生型鶏卵の水溶性卵白ならびにPBSをポジティブコントロールとして組換えヒトインターフェロンをそれぞれ添加した。細胞を20時間培養し、培養上清をQuanti−Blue基質液に添加し、摂氏37℃で1時間反応させた。結果を図15に示す。
インターフェロンノックイン(IFN−KI)卵の水溶性卵白、濃厚卵白の遠心上清、濃厚卵白の粗精製物いずれにおいてもヒトインターフェロンβの活性が認められ、未精製のノックイン卵産物にインターフェロン活性が認められるとともに、超音波破砕やアルギニンバッファーによる可溶化処理を行っても活性があることを示している。したがって鶏卵由来インターフェロンは鶏卵のまま未加工や遠心分画など簡単な加工を行っても、また可溶化、精製などのプロセスをとっても利用可能である。
【0065】
(3)鶏卵に生産したインターフェロンの活性定量
バイオアッセイにより濃厚卵白中のインターフェロン活性を測定した。(2)と同様にHEK−blue IFN−α/βの培養液中にヒトインターフェロンノックイン卵由来(初卵後3ヶ月で採卵)の濃厚卵白(超音波破砕後20k×Gで15分遠心後の上清)を5倍ずつ連続希釈して10μlずつ添加した。比較として市販の組換えヒトインターフェロンβ(和光純薬)10μ/mlを同様に5倍ずつ連続希釈して10μlずつ添加した。細胞を20時間培養し、培養上清をQuanti−Blue基質液に添加し、摂氏37℃で1時間反応させた。結果を図18に示す。上段市販のヒトインターフェロンを添加した培養上清の反応系は、赤色と青色が混在するウエルが左から4番目にあるのに対し、濃厚卵白を添加した培養上清(下段)は左から8番目に存在する(希釈系列は共に左が濃く、右が薄い)。従って濃厚卵白のインターフェロン活性は市販の10μ/mlのインターフェロンより625倍以上高く、6.25mg/ml以上と想定される。濃厚卵白はこの時点で約16ml程度取れたことから、卵1個に市販品換算で約100mg相当の活性を有するヒトインターフェロンが得られた事になる。和光純薬の組換えヒトインターフェロンβは20μgの市価が39,000円であり、100mgは195,000,000円(約2億円)に相当する。本法を用いることで、活性でみても極めて大量のヒト組換え蛋白質を生産することが可能である。
【0066】
(4)G2世代のノックインニワトリの卵解析
G1のノックインニワトリ(雄)を野生型の雌と交配し、G2ノックインニワトリ(雄および雌)を樹立した。G2ノックインニワトリを性成熟させ、卵を得て割卵した(図19右)。G1由来卵と同様に得られた卵は全て濃厚卵白が白濁していた。更に3羽のG2ノックインニワトリより卵を得て濃厚卵白を電気泳動した。G1由来卵の濃厚卵白を比較のために電気泳動した。CBB染色像はG2由来の卵でもG1同様にインターフェロンのシグナルが認められる。以上により、卵管遺伝子にノックインした外来遺伝子の鶏卵への発現が世代を超えて安定的に行われると示された。これにより、ノックインニワトリを用いた組換え蛋白質生産の大規模化や経時的な安定運用が担保される。
【0067】
〈実施例3〉
製造例3で記したようにして得られた、ヒトオボアルブミン遺伝子座ヘヒト抗体遺伝子をノックインしたニワトリから卵を得た。卵白におけるヒト抗体蛋白質の存在について検証を行った。卵白を、等量のサンプルバッファー(0.125M Tris pH6.8,4% SDS,10%グリセロール 0.1%BPBなお、2−MEは含まない)を加え、これをそれぞれ10倍ずつ計3段階に希釈し、5−20%のアクリルアミドゲルで電気泳動により分離を行ったのちにPVDF膜に転写し、スキムミルクで膜への抗体分子の非特異吸着をブロッキングした後、1000倍希釈した抗ヒトイムノグロブリン抗体(Jackson Immuno Research、Anti−Human IgGF(ab))を一次抗体、1000倍希釈した抗ウサギHRP結合抗体(Jackson Immuno Research、Peroxidase−conjugated AffiniPure Goat Anti−Rabbit IgG (H+L))を二次抗体としたウエスタンブロットを行った。結果を図20に示す。
リコンビナントの精製ヒト抗体(商品名:ハーセプチン、ロッシュ)と同位置の約200kDaの場所に抗体で認識されるバンドが認められた(図20右)。また、このバンドは野生型の卵では全く検出されなかった(図20左)。これらのことから、鶏卵内で正常なサブユニット構成でヒト抗体複合体が存在すると考えられる。図20各レーンの1/20,1/200,1/2k(=1/2000)は卵白の原液を1とした相対泳動量を示している。濃度既知のハーセプチンの泳動量との比較により、抗体複合体の濃度が1mg/ml以上であると推定される(図20右)。
【0068】
〈実施例4〉
(1)オボムコイドホモ型遺伝子ノックアウトニワトリ
オボムコイドは卵白蛋白質であるが、初期発生過程における発現動態や発生における機能は解析されておらず、機能欠失が及ぼす影響も全くわかっていない。製造例1−3で示したように、我々はゲノム編集技術により、ヘテロ型のオボムコイドノックアウトニワトリ(雄および雌)を作製した。さらにこれらを交配することでオボムコイドを完全欠損するニワトリ(ホモ型のオボムコイドノックアウトニワトリ)を樹立した。図16に示すようにオボムコイドの蛋白質をコードするエクソン3の同じ場所5塩基を欠損した雄、雌ヘテロノックアウトニワトリを性成熟後交配し、後代を得た。図16に示すように後代の中には野生型、ヘテロ型ノックアウトに加えてホモ型のノックアウトニワトリが得られた。また、オボムコイドのホモ型ノックアウトニワトリは雄、雌が得られており、いずれも野生型と同様に健康で形態の異常なく成長を続けている。このことから、オボムコイドは機能欠失により致死や形態異常等の初期発生に影響を及ぼすものではないことを初めて明らかにすることができた。
【0069】
(2)オボムコイドノックアウトニワトリ卵の有効性
ホモ型のオボムコイドノックアウトニワトリはオボムコイドを分泌しないため、オボムコイドを含まない卵を生産する。オボムコイドは非常に強力なアレルゲン物質であり、加熱や酵素による分解によってもアレルゲン性を失わないことが知られている。オボムコイドを欠損した卵は当然オボムコイドによる強いアレルゲン性を持たないことから、低アレルギー性の卵として生食、加工食品、ワクチン製造、化粧品原料等卵を用いる全ての製造物のアレルギー性を大きく低減させるのに役に立つことが自明である。
【0070】
(3)オボムコイドノックアウトニワトリ卵の性状
ホモ型のノックアウトニワトリの雌は産卵する。少なくとも6ヶ月に渡り野生型と同様ほぼ毎日産卵した。割卵像を図21左に示す。外観上は野生型の卵と違いは認められない。また、加熱により凝固するなど、加工性も通常の鶏卵と顕著な違いを認めない(図21右)。
更に、ホモ型ノックアウトニワトリ同士の交配に依りニワトリ固体が発生し得る。5bpホモ欠損個体の雌雄を交配した卵を孵卵した結果G3世代のオボムコイド5bpホモ欠損個体が得られている(図23)。このことはオボムコイド遺伝子だけでなく、オボムコイド蛋白質が欠損していてもニワトリは発生するすなわちオボムコイドがニワトリ発生に必須ではないことを示している。
【産業上の利用可能性】
【0071】
*ノックイン遺伝子のさらなる発現量の増大
今回の実施例で得られたインターフェロンβの濃度は5mg/mlと非常に高いものであったが、更に卵内における組換え蛋白質の濃度の向上を図ることが可能である。
1.ノックイン遺伝子のホモ化
解析した鶏卵の親の遺伝子型はオボアルブミン遺伝子座の片アリルにヒトインターフェロンβが挿入されたもの(ヘテロ型遺伝子ノックイン)である。ヘテロ型遺伝子ノックイン親同士の交配やノックイン始原生殖細胞を有する生殖巣キメラ個体同士の交配により両アリルにヒトインターフェロンβが挿入された個体(ホモ型遺伝子ノックイン)を作製すれば、より高濃度の組換え蛋白質を発現する個体を得ることが出来る。
2.シグナルペプチドやコドンユーセージの改良
今回オボアルブミン遺伝子の翻訳開始点にはヒトインターフェロンβのcDNAをノックインしている。したがってシグナルペプチドはヒトインターフェロンβのシグナルペプチドであり、ニワトリ卵管細胞に最適化しているものではない。ニワトリ卵管で高効率に分泌するためのシグナルペプチドとしては実際に卵管から分泌される蛋白質のシグナルペプチドが挙げられ、例えば卵白リゾチームのMRSLLILVLCFLPLAALGやオボトランスフェリンのMKLILCTVLSLGIAAVCFAなどが挙げられる。また、これに限らずニワトリ細胞で高効率に蛋白質を分泌できる人工または天然のシグナルペプチドでも良い。これらシグナルペプチドを目的蛋白質のN端に含む蛋白質をオボアルブミン遺伝子座にノックインすることでより高濃度の目的蛋白質生産が可能である。さらにノックインするcDNAの塩基配列をニワトリで用いられるコドン使用頻度に併せて最適化することで蛋白質生産の向上を図る事ができる。
3.挿入遺伝子数の増大
今回ノックインした遺伝子は1つだけであったが、複数個の遺伝子を転写、翻訳が可能な形で連結してノックインし、同時に発現させることで発現量を増大させることが出来る。複数個の遺伝子は単一の遺伝子であっても複数種の遺伝子であっても良く、数もいくつあっても良い。具体的には、遺伝子ノックインに際し、複数の遺伝子をIRESなどの配列を介在させて挿入することでより多くの転写、翻訳を行い、遺伝子産物を得ることが出来る。また、2Aペプチドなどを介在させて複数の蛋白質をオボアルブミンプロモーターの制御下に一度に発現させ、ペプチドを切断することでより多くの蛋白質生産が可能である。
ヒト抗体遺伝子の軽鎖遺伝子と重鎖遺伝子ならびにヒトI型コラーゲン遺伝子のα1とα2をそれぞれ2Aペプチドの遺伝子を介して連結し、ノックインしたニワトリは好ましい実施形態の1つである。
4.ノックアウトニワトリ卵の有効性
ホモ型のオボムコイドノックアウトニワトリはオボムコイドを分泌しないため、オボムコイドを含まない卵を生産する。オボムコイドは非常に強力なアレルゲン物質であり、加熱や酵素による分解によってもアレルゲン性を失わないことが知られている。オボムコイドを欠損した卵は当然オボムコイドによる強いアレルゲン性を持たないことから、低アレルギー性の卵として生食、加工食品、ワクチン製造、化粧品原料等卵を用いる全ての製造物のアレルギー性を大きく低減させるのに役に立つことが自明である。また、交配やゲノム編集された始原生殖細胞を用いることで外因性遺伝子の発現を卵白アレルゲンノックアウトニワトリの卵で行うことも可能であり、このようにして生産された外因性遺伝子産物は精製時のアレルゲン除去過程が容易になることが自明である。
オボムコイド以外の卵管特異的遺伝子をノックアウトした家禽卵は、同様にアレルギー性を大きく低減させるのに役に立つ。
【配列表】







































































(57)【特許請求の範囲】
【請求項1】
(削除)
【請求項2】
オボムコイド遺伝子がホモノックアウトされているノックアウト家禽の卵であって、
オボムコイドをコードする塩基配列において、配列番号6(OVMTg2)に示される塩基配列中のtacagを含む領域の欠失を有している、ノックアウト家禽の卵。
【請求項3】
請求項2に記載のノックアウト家禽の卵であって、
内在性のオボムコイドを実質的に含まない、ノックアウト家禽の卵。
【請求項4】
請求項2または3に記載のノックアウト家禽の卵由来のノックアウト家禽。
 
訂正の要旨 審決(決定)の【理由】欄参照。
異議決定日 2023-06-13 
出願番号 P2020-033109
審決分類 P 1 651・ 121- ZAA (A01K)
最終処分 06   取消
特許庁審判長 上條 肇
特許庁審判官 福井 悟
飯室 里美
登録日 2021-08-02 
登録番号 6923232
権利者 国立研究開発法人産業技術総合研究所
発明の名称 遺伝子改変家禽卵  
代理人 山尾 憲人  
代理人 冨田 憲史  
代理人 山尾 憲人  
代理人 冨田 憲史  

プライバシーポリシー   セキュリティーポリシー   運営会社概要   サービスに関しての問い合わせ