• ポートフォリオ機能


ポートフォリオを新規に作成して保存
既存のポートフォリオに追加保存

  • この表をプリントする
PDF PDFをダウンロード
審決分類 審判 訂正 ただし書き1号特許請求の範囲の減縮 訂正する C23C
審判 訂正 ただし書き2号誤記又は誤訳の訂正 訂正する C23C
管理番号 1150384
審判番号 訂正2006-39146  
総通号数 87 
発行国 日本国特許庁(JP) 
公報種別 特許審決公報 
発行日 1997-05-20 
種別 訂正の審決 
審判請求日 2006-09-06 
確定日 2007-01-10 
訂正明細書 有 
事件の表示 特許第3802053号に関する訂正審判事件について、次のとおり審決する。 
結論 特許第3802053号に係る明細書を本件審判請求書に添付された訂正明細書のとおり訂正することを認める。 
理由 1.手続の経緯
(1)本件特許第3802053号発明についての出願は、平成6年11月1日(優先権主張1993年11月18日、米国)に特許出願され、平成18年5月12日に、その請求項1ないし42に係る発明について特許権の設定登録がなされたものである。
(2)その後、請求人は、平成18年9月6日付けで審判請求書を提出して訂正を求めた。
(3)一方、当審において平成18年10月24日付けで訂正拒絶理由が通知され、これに対して請求人は、平成18年12月15日付けで手続補正書を提出し上記審判請求書の補正を求めたものである。

2.平成18年9月6日付け審判請求書における訂正事項
(1)訂正事項1
特許請求の範囲の請求項21に記載された「微粒子状の」を「ナノサイズの結晶性」と訂正する。
(2)訂正事項2
特許請求の範囲の請求項22に記載された「ナノサイズの結晶性」を「微粒子状の」と訂正する。
(3)訂正事項3
特許請求の範囲の請求項23に記載された「銀を含む原子、イオンまたはクラスター」を「銀を含む原子、イオン、分子またはクラスター」と訂正する。
(4)訂正事項4
特許請求の範囲の請求項27に記載された「請求項23に記載の材料」を「請求項25に記載の材料」と訂正する。
(5)訂正事項5
特許請求の範囲の請求項28に記載された「請求項23に記載の材料」を「請求項25に記載の材料」と訂正する。
(6)訂正事項6
特許請求の範囲の請求項35に記載された「請求項34に記載の方法」を「請求項33に記載の方法」と訂正する。
(7)訂正事項7
特許請求の範囲の請求項40に記載された「請求項33、34または35のいずれか1項に記載の抗菌性材料」を「請求項33、34または35のいずれか1項に記載の方法」と訂正する。
(8)訂正事項8
特許請求の範囲の請求項41に記載された「請求項33、34または35のいずれか1項に記載の抗菌性材料」を「請求項33、34または35のいずれか1項に記載の方法」と訂正する。
(9)訂正事項9
特許請求の範囲の請求項42に記載された「請求項33、34または35のいずれか1項に記載の抗菌性材料」を「請求項33、34または35のいずれか1項に記載の方法」と訂正する。

3.訂正拒絶理由の内容
当審において平成18年10月24日付けで通知した訂正拒絶理由は、次のとおりである。
(1)訂正事項1について
請求人は、審判請求書第3頁第12?18行で「本願明細書には、本願発明に係る微粒状の抗菌材料(200nm未満の粒度)が、ナノサイズの結晶性粉末である場合には、典型的に20nm未満の粒度を有することが開示されている(例えば、特許公報第11頁2行?33行)。従って、請求項21において、「20nm未満の粒度である微粒子状の粉末の形状」というのは、本来「20nm未満の粒度であるナノサイズの結晶性粉末の形状」とすべきであって、明らかな誤記である。」と主張している。
そこで、訂正前の請求項21の記載が誤記であるか否かを検討すると、請求項21が引用する請求項17、18、19又は20のうち、抗菌性材料の粒度及び形状について記載しているのは請求項17であり、請求項17には、抗菌材料が「200nm未満の粒度」で「微粒状の粉末の形」であることが記載されているのに対して、請求項21に係る発明は、「20nm未満の粒度である微粒子状の粉末の形状である」との限定を請求項17に係る発明に付加するものであり、請求項21の記載は、「微粒状の抗菌材料(200nm未満の粒度)が、ナノサイズの結晶性粉末である場合には、典型的に20nm未満の粒度を有する」ことが明細書に記載されているとしても、「20nm未満の粒度」のものも微粒子状の粉末であることに変わりはないから、請求項21の記載自体に不合理な事項は見当たらず、訂正前の請求項21の記載が誤記であるとはいえないし、さらに、請求項21の記載全体をみても不明りょうともいえない。
また、請求項21の記載を「20nm未満の粒度である微粒子状の粉末の形状である」から「20nm未満の粒度であるナノサイズの結晶性粉末の形状」に訂正すると、請求項21に係る発明は、「微粒子状の粉末」が、「ナノサイズの結晶性粉末」に変更されることになるから、上記訂正は、実質上特許請求の範囲を変更するものと認められる。
したがって、訂正事項1は、特許請求の範囲の減縮、誤記の訂正及び不明りょうな記載の釈明の何れを目的としたものでもないから、特許法第126条第1項ただし書き各号に掲げる事項のいずれをも目的とするものではなく、また、実質上特許請求の範囲を変更するものであるから、同条第2項の規定にも適合しない。
(2)訂正事項2について
請求人は、審判請求書第3頁第19?22行で「訂正事項1と同様の理由から、請求項22において、「140nm未満の粒度であるナノサイズの結晶性粉末の形状」というのは、本来「140nm未満の粒度である微粒子状の粉末の形状」とすべきであって、明らかな誤記である。」と主張している。
そこで、訂正前の請求項22の記載が誤記であるか否かを検討すると、請求項22が引用する請求項17、18、19又は20のうち、抗菌性材料の粒度及び形状について記載しているのは請求項17であり、請求項17には、抗菌材料が「200nm未満の粒度」で「微粒状の粉末の形」であることが記載されているのに対して、請求項22に係る発明は、「140nm未満の粒度であるナノサイズの結晶性粉末の形状である」との限定を請求項17に係る発明に付加するものであり、「微粒状の抗菌材料(200nm未満の粒度)が、ナノサイズの結晶性粉末である場合には、典型的に20nm未満の粒度を有する」ことが明細書に記載されているが、この記載によっても、ナノサイズの結晶性粉末が20nm以上の粒度を除外していないものとみることができ、請求項22の記載は、ナノサイズの結晶性粉末として140nm未満の粒度であることを限定していることからみて、典型的なナノサイズの結晶性粉末である20nm未満の粒度も包含している請求項22の記載自体に不合理な事項は見当たらないから、訂正前の請求項22の記載が誤記であるとはいえないし、さらに、請求項22の記載全体をみても不明りょうともいえない。
また、請求項22の記載を「140nm未満の粒度であるナノサイズの結晶性粉末の形状」から「140nm未満の粒度である微粒子状の粉末の形状」に訂正すると、請求項22に係る発明は、「ナノサイズの結晶性粉末」が、「微粒子状の粉末」に変更されることになるから、上記訂正は、実質上特許請求の範囲を変更するものと認められる。
したがって、訂正事項2は、特許請求の範囲の減縮、誤記の訂正及び不明りょうな記載の釈明の何れを目的としたものでもないから、特許法第126条第1項ただし書き各号に掲げる事項のいずれをも目的とするものではなく、また、実質上特許請求の範囲を変更するものであるから、同条第2項の規定にも適合しない。
(3)訂正事項3について
請求人は、審判請求書第3頁第23?27行で「本願明細書から、本願発明に係る抗菌性材料が、電解質との接触の際に、少なくとも一つの金属の原子、イオン、分子又はクラスターを持続的に放出することを特徴とするものであることは明らかであるから、請求項23において「分子」の記載がないのは明らかな誤記である。」と主張している。
そこで、訂正前の請求項23の記載が誤記であるか否かを検討すると、請求項17には、「該材料が、アルコールまたは水を基礎とする電解質との接触の際に、局在化された抗菌性の作用を提供するのに十分な濃度で、少なくとも1つの金属の原子、イオン、分子または少なくとも1つの金属を含有するクラスターを持続的に放出するのに十分な原子の無秩序によって特徴付けられ」と記載されているのに対し、請求項17を引用する請求項23には、「アルコールまたは水を基礎とする電解質との接触の際に、局在化された抗菌性の作用を提供するのに十分な濃度で、銀を含む原子、イオンまたはクラスターまたは持続的に塩基を放出すること」と記載され、「分子」を放出することは記載されていない。
しかし、請求項23の記載をみても、「銀を含む原子、イオンまたはクラスター」との記載に「分子」が欠落しているとしても、選択肢を削除することでより減縮したものとみることができるから、請求項23の記載に不合理な事項は見当たらず、訂正前の請求項23の記載が誤記であるとはいえないし、さらに、請求項23の記載全体をみても不明りょうともいえない。
また、請求項23の記載を「銀を含む原子、イオンまたはクラスター」から「銀を含む原子、イオン、分子またはクラスター」に訂正すると、選択肢として「分子」が増加することになり、上記訂正によって請求項23に係る発明は、「銀を含む原子、イオンまたはクラスター」だけでなく、「銀を含む分子」も包含することになり、実質上特許請求の範囲を拡張するものと認められる。
したがって、訂正事項3は、特許請求の範囲の減縮、誤記の訂正及び不明りょうな記載の釈明の何れを目的としたものでもないから、特許法第126条第1項ただし書き各号に掲げる事項のいずれをも目的とするものではなく、また、実質上特許請求の範囲を拡張するものであるから、同条第2項の規定にも適合しない。
(4)訂正事項6について
請求人は、審判請求書第4頁第2?5行目で「訂正事項6における訂正は、請求項35において引用する請求項を34から請求項33に変更するものであるが、これは単に請求項の記載を誤ったものである。また、特許請求の範囲を何ら変更・拡張するものでないことは明らかである。」と主張している。
そこで、訂正前の請求項35が誤記であるか否かを検討すると、請求項34に係る発明は、請求項33に係る発明に「抗菌性の金属が、Ag、Au、Pt、Pd、Ir、Sn、Cu、Sb、BiおよびZnまたはこれらの金属の1つまたはそれ以上の合金または化合物からなる群から選択されており、かつ生物学的適合性金属は、Ta、Ti、Nb、B、Hf、Zn、Mo、SiおよびAlまたはこれらの金属の1つまたはそれ以上の合金または化合物からなる群から選択されている」との限定を付加するものであるのに対して、請求項35に係る発明は、上記請求項34に係る発明に「抗菌性の金属が、Ag、AuおよびPdから選択されており、かつ生物学的適合性金属は、Ta、TiおよびNbから選択されている」との限定を付加するものであるから、請求項35は、請求項34に記載された抗菌性の金属の選択肢及び生物学的適合性金属の選択肢を更に限定するものとみることができるから、訂正前の請求項35の記載が誤っているとはいえないし、さらに、請求項35の記載全体をみても不明りょうとはいえない。
また、請求項35が引用する請求項を34から請求項33に訂正しても、「抗菌性の金属が、Ag、AuおよびPdから選択されており、かつ生物学的適合性金属は、Ta、TiおよびNbから選択されている」との限定は、請求項33又は34のいずれの請求項を引用しても抗菌性の金属の選択肢及び生物学的適合性金属の選択肢が同じになることから、上記訂正によって請求項35に係る発明が減縮されるものでもない。
したがって、訂正事項6は、特許請求の範囲の減縮、誤記の訂正及び不明りょうな記載の釈明の何れを目的としたものでもないから、特許法第126条第1項ただし書き各号に掲げる事項のいずれをも目的とするものではない。

4.手続補正の適否
これに対して、平成18年12月15日付けの手続補正によって、上記訂正事項1ないし3及び6が削除されるとともに、これに伴って、上記訂正事項4、5及び7ないし9がそれぞれ訂正事項1ないし5に繰り上げられた。
上記手続補正は、訂正事項を削除するものであり、訂正請求の要旨を変更するものではなく、特許法第131条の2第1項の規定に適合する。

5.請求の要旨
本件審判請求の要旨は、特許第3802053号発明の明細書を、前記4.のとおり適法になされた平成18年12月15日付け手続補正書により補正された本件審判請求書に添付した訂正明細書のとおり訂正するものであり、その訂正事項は、下記の訂正事項1ないし5のとおりである。
(1)訂正事項1
特許請求の範囲の請求項27に記載された「請求項23に記載の材料」を「請求項25に記載の材料」と訂正する。
(2)訂正事項2
特許請求の範囲の請求項28に記載された「請求項23に記載の材料」を「請求項25に記載の材料」と訂正する。
(3)訂正事項3
特許請求の範囲の請求項40に記載された「請求項33、34または35のいずれか1項に記載の抗菌性材料」を「請求項33、34または35のいずれか1項に記載の方法」と訂正する。
(4)訂正事項4
特許請求の範囲の請求項41に記載された「請求項33、34または35のいずれか1項に記載の抗菌性材料」を「請求項33、34または35のいずれか1項に記載の方法」と訂正する。
(5)訂正事項5
特許請求の範囲の請求項42に記載された「請求項33、34または35のいずれか1項に記載の抗菌性材料」を「請求項33、34または35のいずれか1項に記載の方法」と訂正する。

6.当審の判断
上記訂正事項1ないし5について、訂正の目的の適否、新規事項の有無及び拡張・変更の存否について、以下検討する。
(1)訂正事項1について
訂正事項1は、特許請求の範囲の請求項27に記載された「請求項23に記載の材料」を「請求項25に記載の材料」と訂正するもの、すなわち、請求項27が引用する請求項を請求項23から請求項25に訂正するものであり、引用される請求項25に係る発明は、請求項23に係る発明に「材料が、更に、40℃未満の再結晶化の温度である」との限定を付加したものであるから、請求項27に係る発明は、上記訂正によって「材料が、更に、40℃未満の再結晶化の温度である」との限定を新たに付加されることになり、結果として請求項27に係る発明は、減縮されることになる。
したがって、訂正事項1は、特許法第126条第1項ただし書き第1号に規定された特許請求の範囲の減縮を目的とする訂正に該当し、願書に添付した明細書に記載した事項の範囲内においてしたものであり、実質上特許請求の範囲を拡張し、又は変更するものではない。
(2)訂正事項2について
訂正事項2は、特許請求の範囲の請求項28に記載された「請求項23に記載の材料」を「請求項25に記載の材料」と訂正するもの、すなわち、請求項28が引用する請求項を請求項23から請求項25に訂正するものであり、引用される請求項25に係る発明は、請求項23に係る発明に「材料が、更に、40℃未満の再結晶化の温度である」との限定を付加したものであるから、請求項28に係る発明は、上記訂正によって「材料が、更に、40℃未満の再結晶化の温度である」との限定を新たに付加されることになり、結果として請求項28に係る発明は、減縮されることになる。
したがって、訂正事項2は、特許法第126条第1項ただし書き第1号に規定された特許請求の範囲の減縮を目的とする訂正に該当し、願書に添付した明細書に記載した事項の範囲内においてしたものであり、実質上特許請求の範囲を拡張し、又は変更するものではない。
(3)訂正事項3について
請求事項3は、請求項40に記載された「請求項33、34または35のいずれか1項に記載の抗菌性材料」を「請求項33、34または35のいずれか1項に記載の方法」と訂正するものであるが、請求項40は、請求項33、34又は35のいずれか1項を引用するものであり、引用される請求項33、34又は35に係る発明は、いずれも方法の発明であることから、請求項40に係る発明は、方法の発明でなければならないにもかかわらず、物(具体的には「抗菌性材料」)の発明となっており、請求項40に記載された「請求項33、34または35のいずれか1項に記載の抗菌性材料」は、「請求項33、34または35のいずれか1項に記載の方法」の誤記であることが明らかである。
したがって、訂正事項3は、特許法第126条第1項ただし書き第2号に規定された誤記の訂正を目的とする訂正に該当し、願書に添付した明細書に記載した事項の範囲内においてしたものであり、実質上特許請求の範囲を拡張し、又は変更するものではない。
(4)訂正事項4について
請求事項4は、請求項41に記載された「請求項33、34または35のいずれか1項に記載の抗菌性材料」を「請求項33、34または35のいずれか1項に記載の方法」と訂正するものであるが、請求項41は、請求項33、34又は35のいずれか1項を引用するものであり、引用される請求項33、34又は35に係る発明は、いずれも方法の発明であることから、請求項41に係る発明は、方法の発明でなければならないにもかかわらず、物(具体的には「抗菌性材料」)の発明となっており、請求項41に記載された「請求項33、34または35のいずれか1項に記載の抗菌性材料」は、「請求項33、34または35のいずれか1項に記載の方法」の誤記であることが明らかである。
したがって、訂正事項4は、特許法第126条第1項ただし書き第2号に規定された誤記の訂正を目的とする訂正に該当し、願書に添付した明細書に記載した事項の範囲内においてしたものであり、実質上特許請求の範囲を拡張し、又は変更するものではない。
(5)訂正事項5について
請求事項5は、請求項42に記載された「請求項33、34または35のいずれか1項に記載の抗菌性材料」を「請求項33、34または35のいずれか1項に記載の方法」と訂正するものであるが、請求項42は、請求項33、34又は35のいずれか1項を引用するものであり、引用される請求項33、34又は35に係る発明は、いずれも方法の発明であることから、請求項42に係る発明は、方法の発明でなければならないにもかかわらず、物(具体的には「抗菌性材料」)の発明となっており、請求項42に記載された「請求項33、34または35のいずれか1項に記載の抗菌性材料」は、「請求項33、34または35のいずれか1項に記載の方法」の誤記であることが明らかである。
したがって、訂正事項5は、特許法第126条第1項ただし書き第2号に規定された誤記の訂正を目的とする訂正に該当し、願書に添付した明細書に記載した事項の範囲内においてしたものであり、実質上特許請求の範囲を拡張し、又は変更するものではない。

7.独立特許要件について
訂正後の請求項27及び28に記載された発明は、訂正前の請求項27及び28に記載された発明を減縮するものであるから、訂正前の請求項27及び28に係る発明と同様に特許出願の際独立して特許を受けることができるものである。

8.むすび
以上のとおり、本件審判の請求は、平成6年改正前の特許法第126条第1項ただし書き第1号及び第2号に掲げる事項を目的としており、かつ、同条第2項及び第3項の規定に適合する。
 
発明の名称 (54)【発明の名称】
抗菌性材料
【発明の詳細な説明】
発明の分野
本発明は、アルコールまたは電解質に接触した場合に、抗菌性の金属種を持続的に放出するような、抗菌性金属コーティング、薄膜および粉末を形成するための方法に関するものである。
発明の背景
効果的な抗菌性コーティングに対する需要は、医療機関においては十分に確立されている。矯正用ピンから、プレートおよびインプラント、更に創傷用包帯および尿用カテーテルに至るまでの医療機器および器具を使用する内科医および外科医は、常に感染から保護されていなければならない。また、安価な抗菌性コーティングは、生物医学的/生物工学的実験室の備品と同様に、消費者の健康管理および個人用衛生製品に使用される医療機器に施されている。本明細書中および特許請求の範囲で使用されている“医療機器”という用語は、この種の全ての製品を意味するものである。
Ag、Au、Pt、Pd、Ir(即ち、貴金属)、Cu、Sn、Sb、BiおよびZnのような金属イオンの抗菌性の作用は、公知である(Morton,H.E.、Pseudomonas in Disinfection,Sterilization and Preservation、S.S.Block編、Lea and Febiger、1977年およびGrier,N.、Silver and Its Compounds in Disinfection,Sterilization and Preservation、S.S.Block編、Lea and Febiger、1977年を見よ)。抗菌性の能力を有する金属イオンについては、銀が、低い濃度での銀の非常に良好な生物活性により、おそらく最も知られているものである。この現象は、微量殺菌作用と呼称される。現代医学の実地では、銀の無機可溶性塩および有機可溶性塩の双方が、細菌感染症の予防および処置に使用されている。前記化合物は、可溶性塩として作用するが、該化合物は、遊離銀イオンの移動および複合による損失により、延長された防護は得られない。該化合物は、前記の問題を克服するために頻繁に間隔をおいて再供給されなければならない。再供給は、殊に、内在するかまたは移植された医療機器が必要とされる場合には、必ずしも実際的ではない。
低い水準の溶解度であるような、銀を含有する錯体を生じさせることによって、処置の間の銀イオンの放出を緩慢にさせることが試みられている。例えば米国特許第2785153号明細書には、前記目的のためのコロイド状銀蛋白質が開示されている。この種の化合物は、通常、クリーム状物として調製されている。前記化合物は、その制約された効力により医療の分野で広く適用されていない。銀イオン放出速度は、極めて緩慢なものである。更に、この種の化合物からなるコーティングは、粘着、耐摩耗性および貯蔵寿命の問題により制約を受けている。
抗菌性の目的のために銀金属コーティングを使用することは、提案されている。例えば、Deitch他、Anti-microbial Agents and Chemotherapy、第23(3)巻、1983年、第356?359頁およびMackeen他、Anti-microbial Agents and Chemotherapy、第31(1)巻、1987年、第93?99頁を参照のこと。しかしながら、一般に、金属表面からの銀イオンの拡散移動は極く僅かであるので、この種のコーティングだけでは、望ましい水準の効力が得られないことは認められている。
銀金属コーティングは、Spire Corporation、U.S.A.によってSPI-ARGENTの登録商標で製造されている。このコーティングは、イオンビーム補助被覆(ion-beam assisted deposition)(IBAD)コーティング過程によって形成される。この感染耐性コーティングは、抑制試験の帯域によって示されているように水溶液中に滲出せず、従って、銀金属表面が銀イオンの抗菌性の量を放出しないという確信を強めると記載されている。
メタリックの銀コーティングの破損が望ましい抗菌性の効力を生じるようにするために、別の研究者が新規の活性化法を試みている。1つの技術は、メタリックの銀インプラントの電気的活性化を使用することである(Marino他、Journal of Biological Physics、第12巻、1984年、第93?98頁を参照のこと)。メタリックの銀の電気刺激は、殊に、移動する患者にとっては必ずしも実際的ではない。この問題を克服するための試みには、電気作用によるその場での電流の発生が含まれる。金属帯状物または異なる金属の層は、薄膜コーティングとして機器の上に被覆されている。電池は、互いに接触している2つの金属が導電性の流体中に置かれる場合に製造される。1つの金属層は、電解液中に溶解するアノードとして機能する。第2の金属は電気化学電池を運転するカソードとして機能する。例えばCuおよびAgの層を選択する場合、Cuは、Cu+イオンを電解液中に放出するアノードである。更に高貴な金属、Agは、イオン化されず、かつ任意の広い範囲で溶解しないカソードとして機能する。前記の性質の典型的な機器は、Haynes他により1989年12月12日に発行された米国特許第4886505号明細書中に記載されている。前記特許は、スイッチが閉じられた場合に金属イオンの放出が達成されるような金属の1つに取り付けられたスイッチと一緒に、2つまたはそれ以上の異なる金属の、スパッタされたコーティングを開示している。
前記の作業は、例えば銀と銅のように交互に異なる金属の薄い積層からなる薄膜は、表面が最初に腐食される場合に溶解させることができることを示した。この場合、エッチング過程は、高度に織り目の写った表面を生じる(M.TanemuraおよびF.Okuyama、J.Vac.Sci.Technol.、第5巻、1986年、第2369?2372頁を参照のこと)。しかしながら、この種の多層薄膜の製造法は、時間がかかるし、高価である。
メタリックコーティングの電気的活性化は、適当な溶液を問題にしていない。ガルバーニ作用は、電解質が存在し、かつ電池対物質の2つの金属の間の電気的接続が存在する場合にのみ発生することは注意しなければならない。電触は、第一に、2つの金属のメタリックの中間面で生じるので、電気的接触は、保持されていない。従って、延長された期間に亘る金属イオンの連続的放出は、ありそうにない。また、銀のような金属を放出するガルバーニ作用は、達成困難である。上記のように、最も優れた抗菌性の作用を示す金属イオンは、貴金属、例えばAg、Au、PtおよびPdである。いくつかの金属は、アノードでのAgのような貴金属を放出させるような、前記のカソード材料として有用な金属よりも更に高貴である。
銀の金属表面を活性化させるための第二の試みは、加熱または化学薬品を使用することである。Scales他により、1984年10月16日および1986年10月7日に発行された米国特許第4476590号明細書および同第4615705号明細書には、それぞれ、末端補綴インプラント(endoprosthetic implants)の上の銀表面コーティングを、180℃を上回る加熱または過酸化水素との接触によって、該インプラントを生体浸食可能(bioerodible)にさせるために活性化する方法を開示している。この処理は、被覆することができ、かつ活性化することができる支持体/機器により制限されている。
それでもやはり、以下の性質:
- 治療学的活性水準での抗菌剤の持続的放出;
- 機器および材料の広い範囲への適用可能;
- 有用な貯蔵寿命;および
- 低い哺乳類に対する毒性
を有する効力のある安価な抗菌性材料に対する需要がある。
金属コーティングは、典型的には、スパッタリングのような蒸着技術によって薄膜として製造される。金属、合金、半導体およびセラミックの薄膜は、電子部材の製造の場合に広く使用される。これらの最終用途は、最小の欠陥を有する緊密な結晶構造体として製造される薄膜を必要とする。該薄膜は、しばしば、析出後にアニールされ、粒の成長および再結晶化を増大させ、かつステープルの性質を生じさせる。金属薄膜を析出させる技術は、R.F.Bunshah他、“Deposition Technologies for Films and Coatings”、Noyes Publications、N.J.、1982年およびJ.A.Thornton、“Influence of Apparatus Geometry and Deposition Conditions on the Structure and Topography of Thick Sputtered Coatings”、J.Vac.Sci.Technol.第11(4)巻、第666?670頁、1974年が検討される。
Menzelにより1982年4月20日に発行された米国特許第4325776号明細書は、集積回路中での使用のための一定の金属から粗大結晶または単結晶の金属薄膜の製造法を開示している。この金属薄膜は、金属層が非晶質段階であるような程度で冷却された支持体(-90℃以下)の上へ析出させることによって形成されている。次に、該金属層は、ほぼ室温にまで支持体を加熱することによってアニールされている。この最終生成物は、電気移動欠陥なしにより高い電流密度を可能にする大きな粒径および優れた均質性を有していると記載されている。
銀塩、例えば硝酸塩、蛋白質、酢酸塩、乳酸塩およびクエン酸塩の銀塩は、医療機器用の抗菌性コーティング中での使用のために提案されている。硝酸銀は、多くの病院で、火傷用包帯中で使用されている。前記の塩は、銀金属よりも良好な抗菌性の効果を有していることが知られている。前記化合物が効力を有するようなメカニズムは、Ag+イオンを生じるための即時イオン化/電離である。Ag+イオンの有用性は、体液または組織の中でかまたは体液または組織と接した際に著しく減少される。この種の液体の高い塩化物含量のために、銀は、沈殿するかまたは不溶性塩化銀として結合してしまう(Ksp=1.7×10-10M)。従って、銀の過剰量は、水中で観察されるのと同等の、銀塩からの効力を生じるために、沈殿物(主として塩化物)を含有する任意の媒体中に存在していなければならない。
粉末、薄膜およびフレークの形状でのナノサイズの結晶性材料は、単層または多層の多結晶体である材料であり、その粒度は、少なくとも1つの次元でほぼ数(典型的には20未満)ナノメーターである。微粒状の粉末(粒径5ミクロン未満)は、ナノサイズの結晶であってもよいかまたは更に典型的には、20nmを上回る粒度である。ナノサイズの結晶性材料および微粉末は、多数の変性されたガス凝縮法によって製造することができ、この場合、析出されるべき材料は、蒸気相中で、例えば蒸発またはスパッタリングによって生じ、かつ作業ガス雰囲気および温度が制御されている相対的に大きな容積の中に運搬されている。作業ガス雰囲気の原子を有するコロイドを析出すべき材料の原子は、エネルギーを喪失し、かつ迅速に蒸気相から冷たい支持体、例えば液体窒素冷却指状部材の上に凝縮される。原則として、極めて微細な粒度の多結晶体を製造することができる全ての方法は、ナノサイズの結晶性材料を製造するために使用することができる。前記の方法には、例えば蒸発、例えばアーク蒸発、電子ビーム蒸着、分子ビームエピタキシー、イオンビーム、スパッタリング、マグネトロンスパッタリングおよび反応性スパッタリングが含まれる(例えば、Froes,F.H.他、“Nanocrystalline Metals for Structural Applications”、JOM、41(1989年)、No.6、第12?17頁;Birringer,Rainer他、“Nanocrystalline Materials-A First Report,Proceedings of JIMIS-4;およびGleiter,H.“Materials with Ultrafine Microstructures:Retrospectives and Perspectives,NanoStructured Materials、第1巻、第1?19頁、1992年およびこれらに引用された参考文献を見よ)。
発明の概要
本発明者らは、抗菌性金属コーティングの開発を意図するものである。本発明者らは、従来信じられていたこととは異なり、拡散を制限する条件下に、原子の無秩序状態を“凍結”する蒸着によって、材料中に原子の無秩序状態を生じさせることによって、抗菌性の金属材料から金属コーティングを形成することが可能であることを見出した。こうして生じた抗菌性コーティングは、抗菌性の作用を生じるように、溶液中へ抗菌性金属種を持続的に放出することが見出された。
“原子の無秩序状態”と増大された溶解度とを結び付ける前記の基礎的発見は、広く適用されるものである。本発明者らは、溶解度を生じるように、原子の無秩序状態を、別の材料形、例えば金属粉末で生じさせることができることを示した。また、本発明には、抗菌性金属以外に、任意の金属、金属合金または金属化合物も含まれるものであり、この場合、溶液中へ金属種を放出し続けることが望ましいような半導体またはセラミック材料を含むものである。例えば増大されたかまたは制御された金属溶解を示す材料は、センサ、スイッチ、ヒューズ、電極およびバッテリーにおいて使用されている。
本明細書中で使用されている“原子の無秩序状態”という語は、結晶格子中の点欠陥、空格子点、転位のような線状欠陥、間入原子、非晶質領域、粒界および準粒界(sub grain boundaries)および標準的な秩序を持った結晶状態に関するようなものを高い濃度で有することを意味する。原子の無秩序状態は、表面位相に不規則性およびナノメートルの尺度での構造の不均一性を誘発するものである。
本明細書中で使用されている“標準的な秩序を持った結晶状態”という語の場合は、通常、塊状金属材料、合金または鋳造、精製または鍍金された金属生成物として形成された化合物に見出される結晶度を意味する。この種の材料は、空格子点、粒界および転位のような原子の欠陥の低い濃度だけを有するものである。
本明細書中で使用されている“拡散”という語は、形成される材料の表面上またはマトリックス中での原子および/または分子の拡散を意味するものである。
本明細書中で使用されている“金属”という語には、実質的に純粋な金属、合金または酸化物、窒化物、硼化物、硫化物、ハロゲン化物または水素化物のような化合物の形であろうとも1つまたはそれ以上の金属が含まれていることを意味するものである。
本発明は、広い意味で、1つまたはそれ以上の金属を含有する変性剤量を形成する1つの方法に関するものである。この方法は、有利に支持可能なベースの上で、少なくとも1つの金属の原子、イオン、分子またはクラスターを材料用の溶剤の中へ放出させるために、十分な原子の無秩序状態が材料中に保持されているような程度に拡散を制限する条件下で、材料中に原子の無秩序状態を生じさせることからなる。クラスターは、R.P.Andres他によって、“Research Opportunities on Clusters and Cluster-Assembled Materials”、J.Mater.Res.第4巻、第3号、1989年、第704頁に記載されているように、原子、イオン等の小さな群であることが知られている。
本発明の詳細な好ましい実施態様は、原子の無秩序状態を冷間加工によって金属粉末または箔の中で生じさせることができ、かつ低い支持耐温度での蒸着による析出によって金属コーティング中に生じさせることができることを示している。
別の広い意味で、本発明は、材料用の溶剤と接触した材料が、有利に支持可能なベースの上で、標準的な秩序を持った結晶状態に対して高められた割合で、少なくとも1つの金属の原子、イオン、分子または少なくとも1つの金属を含有するクラスターを放出するような程度に十分な原子の無秩序状態によって特徴付けられる形状での1つまたはそれ以上の金属からなる変性材料を提供するものである。
本発明の好ましい実施態様の場合、変性剤量は、冷間加工条件下に、原子の無秩序状態を生じさせかつ保持するために、機械的に加工されるかまたは圧縮された金属粉末である。
本明細書中で使用されている“金属粉末”という語には、広い粒度、この場合、ナノサイズの結晶性の粉末からフレークまでの範囲の金属粒子が含まれていることを意味するものである。
本明細書中で使用されている“冷間加工”という語は、材料が、材料の再結晶化温度よりも低い温度で、微粉砕、粉砕、槌打ち、乳鉢と乳棒または圧縮によって機械的に加工されることを意味するものである。このことは、加工することによって付与された原子の無秩序状態が、材料中で保持されていることを保証するものである。
別の好ましい実施態様の場合、変性材料は、真空蒸発、スパッタリング、マグネトロンスパッタリングまたはイオンプレーティングのような蒸着技術によって支持体上に形成された金属コーティングである。この材料は、析出の間に拡散を制限し、かつ析出に引き続くアニール化または再結晶化を制限する条件下に形成される。有利に、コーティング中に原子の無秩序状態を生じさせるために使用された析出条件は、欠点のない緊密で平滑な薄膜を生じさせるために使用される作業条件の標準的な範囲を超えるものである。この種の標準的な実施は、よく知られている(例えば、R.F.Bunshah他、supraを参照のこと)。有利に、析出は、析出される金属または金属化合物の融点に対する支持体温度の割合(T/Tm)が、約0.5未満、更に有利に約0.35未満、最も有利に0.30未満で維持されるような程度に低い支持体温度で行われる。前記の割合の場合、温度は、絶対温度である。好ましい割合は、金属と金属との間で変動し、かつ合金または不純物の含量とともに増大する。原子の無秩序状態を生じさせるための他の好ましい析出条件には、標準的な作業ガス圧よりも高い作業ガス圧、コーティングフラックスの標準的な入射角度よりも低いコーティングフラックスの入射角度および標準的なコーティングフラックスの入射角度よりも高いコーティングフラックスの入射角度の1つまたはそれ以上が含まれている。
析出または冷間加工の温度は、材料が室温または使用のために意図された温度(例えば、抗菌性の材料の本体温度)にされる場合に、実質的なアニール化または再結晶化が生じることになる程度に低いものではない。析出と使用の温度との間の温度差(ΔT)が大きすぎる場合には、アニーリングが生じ、この場合、原子の無秩序状態は取り除かれる。このΔTは、金属と金属との間で、かつ使用された析出技術に応じて変動することになる。例えば、銀に関しては、-20ないし200℃の支持体温度は、物理的蒸着の間を通じて好ましいものである。
通常必要とされる緊密で平滑で欠点のない金属薄膜を析出するための標準的作業ガス圧または周囲作業ガス圧は、使用される物理的蒸着の方法に応じて変動する。一般に、スパッタリングについては、標準的作業ガス圧は、10Pa(パスカル)(75mT(ミリトル))未満であり、マグネトロンスパッタリングについては、1.3Pa(10mT)未満であり、かつイオンプレーティングについては、30Pa(200mT)未満である。真空蒸発法のために変動する標準的な周囲ガス圧は、以下のように変動する:e-ビームまたはアーク蒸発については、0.0001Pa(0.001mT)?0.001Pa(0.01mT)であり;ガス散乱蒸発(加圧プレーティング)および反応性アーク蒸発については、30Pa(200mT)までであるが、しかし、典型的には、3Pa(20mT)未満である。従って、本発明の方法によれば、原子の無秩序状態を達成するための低い支持体温度を使用すること以外に、前記の標準的なものよりも高い作業(または周囲)ガス圧は、コーティング中の原子の無秩序状態の水準を増大させるために使用してもよい。
本発明のコーティング中の原子の無秩序状態の水準に対して影響を及ぼすことが見出された別の条件は、析出の間のコーティングフラックスの入射角度である。通常、緊密で平滑なコーティングを達成するために、前記の角度は、約90°±15°で維持されている。本発明によれば、原子の無秩序状態を達成するための析出の間の低い支持体温度を使用すること以外に、約75°を下回る入射角度を、コーティング中の原子の無秩序状態の水準を増大させるために使用してもよい。
更に、原子の無秩序状態の水準に対して影響を及ぼす別の処理パラメーターは、被覆される表面に対する原子フラックスである。高い析出率には、原子の無秩序状態を増大させる傾向があるが、しかしまた、高い析出率には、コーティング温度を高める傾向もある。従って、最適の析出率は、析出技術、コーティング材料および他の処理パラメーターに左右される。
抗菌性材料を得るためには、コーティングまたは粉末中で使用された金属は、抗菌性の作用を有しているものであるが、しかし、生物学的適合性(意図された有効性ついて非毒性)のものである。好ましい金属には、Ag、Au、Pt、Pd、Ir(即ち、貴金属)、Sn、Cu、Sb、BiおよびZn、前記金属の化合物または前記金属の1つ以上を含有する合金が含まれている。この種の金属は、以下に“抗菌性金属”と呼称される。最も好ましいものは、Agまたはその合金および化合物である。本発明による抗菌性の材料は、有利に、抗菌性材料の原子、イオン、分子またはクラスターが、支持可能なベース上で、アルコールまたは水を基礎とする電解質の中に放出されるのに十分な原子の無秩序状態とともに形成されている。“支持可能なベース”という語は、一方で、抗菌性の作用を達成するにはあまりに低過ぎる割合および濃度で金属イオン等を放出する塊状金属から得られる放出から区別され、他方で、実際にアルコールまたは水を基礎とする電解質と接触すると直ちに銀イオンを放出する硝酸銀のような高度に溶解性の塩から得られる放出から区別されるために本明細書中で使用されている。これとは異なり、本発明の抗菌性材料は、有用な抗菌性の作用を得るのに十分な期間に亘って、十分な割合および濃度で、抗菌性金属の原子、イオン、分子またはクラスターを放出するものである。
本明細書中で使用されている“抗菌性の作用”という語は、抗菌性金属の原子、イオン、分子またはクラスターが、材料付近での細菌の成長を抑制するのに十分な濃度で材料が接触する電解質の中に放出されることを意味するものである。抗菌性の作用の測定の最も一般的な方法は、材料が細菌の群生(bacterial lawn)の上に置かれている場合に生じた抑制帯域(ZOI)を測定することである。相対的に小さいかまたは全くないZOI(例えば、1mm未満)は、役に立たない抗菌性の作用を示すものであり、他方大きなZOI(例えば、5mmを上回る)は、大いに有用な抗菌性の作用を示すものである。ZOI試験のための1つの方法は、以下の実施例中に記載されている。
本発明は、抗菌性の粉末またはコーティングから形成されているか、抗菌性の粉末またはコーティングを配合しているか、抗菌性の粉末またはコーティングを有するかまたは抗菌性の粉末またはコーティングで被覆されて形成されている医療機器のような機器に関するものである。抗菌性コーティングは、カテーテル、縫合糸、インプラント、火傷用包帯等のような医療機器の上への蒸着によって直接析出されてもよい。粘着層、例えばタンタルは、機器と抗菌性コーティングとの間に施すことができる。また、粘着は、従来技術で公知の方法により、例えば支持体をエッチングするかまたは同時にスパッタリングおよびエッチングにより支持体とコーティングとの間の混合された中間面を形成することによって増大されてもよい。抗菌性の粉末は、従来技術で公知の技術によって、クリーム状物、重合体、セラミック、塗料または他のマトリクスの中に配合されてもよい。
本発明の更に広い意味の場合、変性材料は、有利に、原子の無秩序状態を有する複合金属コーティングとして製造される。この場合、溶液の中に放出されることになる1つまたはそれ以上の金属または化合物のコーティングは、異なる材料の原子または分子を含有するマトリクスを構成している。異なる原子または分子の存在は、例えば異なる寸法の原子のために、金属マトリクス中に原子の無秩序状態を生じることになる。異なる原子または分子は、放出されることになる第1の金属または複数の金属と一緒に、同時にかまたは逐次的に析出される1つまたはそれ以上の第2の金属、金属合金または金属化合物であってもよい。また、異なる原子または分子は、反応性蒸着の間に作業ガス雰囲気から吸着されてもよいかまたはトラップされてもよい。これらの異なる原子または分子の包接によって達成された原子の無秩序状態の程度、従って溶解度は、材料に応じて変動するものである。複合材料中の原子の無秩序状態を保持しかつ増大させるためには、上記の蒸着条件、即ち、低い支持体温度、高い作業ガス圧、コーティングフラックスの低い入射角度および高い入射角度の1つまたはそれ以上を、異なる原子または分子の包接と組み合わせて使用してもよい。
抗菌性の目的のための好ましい複合材料は、作業ガス雰囲気中の酸素、窒素、水素、硼素、硫黄またはハロゲン原子を含める原子または分子を包接し、他方、抗菌性金属を析出することによって形成される。前記の原子または分子は、薄膜の中に吸着されるかまたはトラップされることによってかまたは析出されている金属と反応することによってコーティングの中に配合される。析出の間の前記のメカニズムの双方は、以下に“反応性析出”と呼称される。前記元素、例えば酸素、水素および水蒸気を含有するガスは、連続的に得ることができるかまたは逐次的析出のために搏動されてもよい。
また有利に、抗菌性の複合材料は、Ta、Ti、Nb、Zn、V、Hf、Mo、SiおよびAlから選択された1つまたはそれ以上の不活性の生物学的適合性金属と一緒に、抗菌性金属を同時かまたは逐次的に析出することによって製造される。また、該複合材料は、前記金属の酸化物、炭化物、窒化物、硼化物、硫化物またはハロゲン化物および/または不活性金属の酸化物、炭化物、窒化物、硼化物、硫化物またはハロゲン化物のような抗菌性金属の1つまたはそれ以上を、同時にか、逐次的にかまたは反応性に析出することによって形成されてもよい。特に好ましい複合体は、銀および/または金の酸化物を、単独でかまたは1つまたはそれ以上のTa、Ti、ZnおよびNbの酸化物と一緒に含有するものである。
また、本発明は、原子の無秩序状態を伴って形成された抗菌性材料の抗菌性の作用を活性化するかまたは更に向上させる方法に関するものでもある。従って、本発明により製造された抗菌性材料は、抗菌性の作用を更に向上させるために照射されてもよい。しかしながら、抗菌性の作用を生じるには不十分であるような原子の無秩序状態の水準を伴って最初に形成された材料に照射することも可能であり、その結果、照射された材料が、許容可能な抗菌性の作用を有することになる。この活性の方法は、β線またはX線、しかし最も有利にはγ線のような放射線の低い線状エネルギー伝達形態を用いて該材料に照射することからなる。1Mradを上回る線量は、有利である。抗菌性材料は、有利に、入射線に対して本質的に垂直に配向されている。Ta、AlおよびTiの酸化物、しかし最も有利には酸化珪素のような誘電体に隣接した材料に照射することによって、活性の水準は、更に向上されてもよい。
また、本発明は、アルコールまたは水を基礎とする電解質との接触の際に、Ag+、Ag2+およびAg3+以外の銀イオンの錯体を形成する抗菌性の銀材料の製造に関するものでもある。この銀錯イオンは、驚異的なことに、従来技術の銀塩から放出されたAg+イオンよりも大きな抗菌性の効力を有することが見出されている。銀錯イオンの例には、Ag(CN)2-、AgCN(aq)(イオン対)、Ag(NH3)2+、AgCl2-、Ag(OH)2-、Ag2(OH)3-、Ag3(OH)4-およびAg(S2O3)23-が含まれている。本発明による原子の無秩序状態を伴って製造された銀コーティング、粉末、フレークおよび箔は、抗菌性の効力を有する銀錯イオンを放出する銀材料の例である。また、この銀材料は、銀錯イオンを含有する溶液、軟膏剤、塗布剤または懸濁液として製造されてもよい。この種の銀材料は、例えば医療機器用のコーティングとして、局所抗菌性組成物中、防汚塗料またはコーティング中および抗菌フィルターようのコーティングとして広く適用されている。
従って、本発明の広い意味によれば、アルコールまたは水を基礎とする電解質中で抗菌性の作用を生じる方法が得られ、この場合、Ag+としての銀の当量によって生じるものよりも大きなものである抗菌性の作用を、アルコールまたは水を基礎とする電解質との接触の際に生じるような量で、Ag+、Ag2+およびAg3+以外の銀イオンの錯体を形成するような銀材料を製造し;かつ銀錯イオンの放出を生じるように処理されることになる表面、アルコールまたは電解質と該銀材料を接触させることからなる。
更に、本発明は、微粉末、フレークまたは薄膜形状物中で200nm未満の粒度を有する1つまたはそれ以上の抗菌性金属またはその合金または化合物からなり、材料が、アルコールまたは水を基礎とする電解質との接触の際に、局在化された抗菌性の作用を提供するのに十分な濃度で、アルコールまたは水を基礎とする電解質の中に少なくとも1つの抗菌性金属の原子、イオン、分子またはクラスターを持続的に放出するような程度に十分な原子の無秩序状態によって特徴付けられる微粉末、薄膜またはフレーク形状物での微粒状の抗菌性材料に関するものである。
抗菌性の材料は、原子の無秩序状態を、冷間作業条件下に材料を機械的に加工し、例えば圧縮することによって、1つまたはそれ以上の抗菌性金属の予備成形された微粒状またはナノサイズの結晶性(20nm未満)の粉末、フレークまたは薄膜の中に導入することによって製造されてもよい。また、原子の無秩序状態は、抗菌性金属が、原子の無秩序状態がマトリクス中に生じかつ保持されるような程度の条件下に、異なる材料の原子または分子と一緒に、マトリクス中に同時にか、順次または反応性に析出されるような蒸着技術による微粒状またはナノサイズの結晶性材料(薄膜、フレークまたは粉末)の合成の間に生じてもよい。異なる材料(またはドーパント)は、不活性の生物学的適合性金属、酸素、窒素、水素、硼素、硫黄およびハロゲン原子および抗菌性金属または生物学的適合性金属のいずれか一方または双方の酸化物、窒化物、炭化物、硼化物、硫化物およびハロゲン化物から選択されている。好ましい、生物学的適合性金属には、Ta、Ti、Nb、B、Hf、Zn、Mo、SiおよびAlが含まれている。前記の異なる材料は、抗菌性金属とともに、更に例えばTaまたは酸化タンタルを含有していてもよいような同じかまたは別個の標的、例えばAgおよび/または酸化銀の標的の中に包含されていてもよい。また、この異なる材料は、作業ガスから、蒸着の間に、例えばスパッタリングまたは酸素のような異なる材料の原子または分子を含有する雰囲気中での反応性スパッタリングによって導入されてもよい。
本発明の方法により製造された銀材料の抗菌性の形状物は、物理的に特性決定されており、かつ以下の新規の特性が見出されている:
- プラスの静止電圧、Erest、1Mの水酸化カリウム中で、飽和甘コウ参照電極(SCE)に対して測定した場合;
- 約0.33、最も有利に約0.30未満の、絶対温度K、(Trec/Tm)での再結晶化の温度対融点の有利な割合;
- 約140℃未満の再結晶化の有利な温度
- 約200nm、有利に140nm未満、最も有利に90nm未満の有利な粒度。
おそらく粒度を除いて、これらの物理的特性のそれぞれは、材料中の原子の無秩序状態の存在の結果であると信じられている。これらの特性は、本発明の銀材料と従来技術の材料またはこれらの標準的な秩序を持った結晶状態での材料とを同定しかつ区別する助けとなるものである。好ましい新規の抗菌性銀材料は、例えば、XRD分析、XPS分析およびSIMS分析によって、アルゴンのような不活性雰囲気中で析出した場合に、実質的に純粋な銀金属からなるものとして特性決定されている。しかしながら、作業ガス雰囲気が酸素を含有する場合には、該材料は、実質的に純粋な銀金属と、酸化銀およびトラップされたかまたは吸着された酸素の原子または分子の1つまたは双方のマトリクスからなるものである。本発明の材料の特徴のもう1つの区別は、TEM分析から明らかな、粒構造中での双晶の成長の存在である。
図面の簡単な説明
第1図は、粒度および双晶欠陥成長を示す、本発明によるスパッタリング析出された銀コーティングの透過型電子顕微鏡写真である。
第2図は、大きな粒度およびアニーリング双晶の存在を示す、アニーリング後の第1図の薄膜の透過型電子顕微鏡写真である。
好ましい実施態様の記載
上記のように、本発明には、抗菌性の材料以外の使用がある。しかしながら、本発明は、本明細書中に、他の金属、金属合金および金属化合物の有用性の例証となる抗菌性金属と一緒に開示されている。好ましい金属には、AlおよびSiおよび周期律表の以下の群:第4、5および6周期の第IIIB、IVB、VB、VIB、VIIB、VIIIB、IB、IIB、IIIA、IVAおよびVA族(Asを除く)からの金属元素(Merck Index第10版中に、Merck and Co.Inc.、Rahway,N.J.、Martha Windholzにより出版された周期律表を参照のこと)が含まれている。異なる金属は、溶解度の程度を変動させることになる。しかしながら、本発明による原子の無秩序状態の発生および保持は、標準的な秩序を有する結晶状態の材料の溶解度を上回って、適当な溶剤中、例えば詳細な材料のための溶剤、典型的には極性溶剤の中へのイオン、原子、分子またはクラスターとしての金属の増大された溶解度(放出)を生じる。
本発明の抗菌性の材料から形成されているか、本発明の抗菌性の材料を配合しているか、本発明の抗菌性の材料を有するかまたは本発明の抗菌性の材料で被覆されている医療機器は、一般に、該機器表面上での微生物の成長が可能であるような任意の期間に体液(例えば、血液、尿、唾液)または体組織(例えば、皮膚、筋肉または骨)を含めたアルコールまたは水を基礎とする電解質と接触することになる。また、“アルコールまたは水を基礎とする電解質”という語には、アルコールまたは水を基礎とするゲルが含まれている。最も多くの場合、該機器は、カテーテル、インプラント、気管用管、矯正ピン、インシュリンポンプ、創傷縫合材(wound closure)、ドレーン、包帯、分流器(shunt)、コネクタ、人工器質、ペースメーカー用導線、針、外科用器具、歯科用補綴材、ベンチレーター管等のような医療機器である。しかしながら、本発明は、この種の機器に限定されるものではなく、消費者の健康管理に有用な他の機器、例えば滅菌包装材、衣料品および履物、個人用衛生製品、例えばおむつおよび衛生用パッド、生物医学的または生物工学的実験室用備品、例えばテーブル、密閉箱および壁装材等のような他の機器に関するものでもある。本明細書中および請求の範囲中で使用されている“医療機器”という用語は、広く全てのこの種の機器に関するものである。
前記の機器は、任意の適当な材料、例えば鋼、アルミニウムおよびその合金を含めた金属、ラテックス、ナイロン、シリコーン、ポリエステル、ガラス、セラミック、紙、生地および他のプラスチックおよびゴムで製造されてもよい。埋込型医療機器としての使用のために、該機器は、生物不活性材料で製造されることになる。該機器は、平坦なシート状物からディスク状物、ロッド状物および中空管までの範囲でその有用性によって定められた任意の形状をとることができる。該機器は、剛性または可撓性であってよく、また、ファクターはその意図された使用によって定められる。
抗菌性コーティング
本発明による抗菌性コーティングは、薄いメタリック薄膜として、医療機器の1つまたはそれ以上の表面上に蒸着技術によって析出される。技術上周知である物理的蒸着技術は全て、支持体表面の上に、蒸気から金属を、一般には、原子に原子を析出させるものである。この技術には、真空またはアーク蒸発、スパッタリング、マグネトロンスパッタリングおよびイオンプレーティングが含まれている。析出は、上記により定義されたように、コーティング中に原子の無秩序状態を生じさせるための1つ方法である。原子の無秩序状態を生じる原因の種々の条件は、有用である。前記の条件は、一般に、目的が欠陥のない平滑で緊密な薄膜を生じさせることであるような薄層析出技術の場合に回避されている(例えば、J.A.Thornton、supraを参照のこと)。かかる条件が従来技術で研究されていたのに対して、前記の条件は、以前は、こうして生じたコーティングの向上した溶解度に結び付けられてはいなかった。
析出過程の間に原子の無秩序状態を生じさせるために使用される好ましい条件には、次のものが含まれる:
-(絶対温度での)金属の融点に対する支持体温度の割合が、約0.5未満、更に有利に約0.35未満、最も有利に約0.3未満であるような温度で被覆されることになる表面を維持している低い支持体温度;および場合によっては、次の一方または双方:
- 標準的な作業(または周囲)ガス圧よりも高い圧力、例えば、真空蒸発について:e-ビームまたはアーク蒸発は、0.001Pa(0.01mT)を上回る圧力、ガス散乱蒸発(加圧プレーティング)または反応性アーク蒸発は、3Pa(20mT)を上回る圧力;スパッタリングについて:10Pa(75mT)を上回る圧力;マグネトロンスパッタリングについて:約1.3Pa(10mT)を上回る圧力;およびイオンプレーティングについて:約30Pa(200mT)を上回る圧力;および
- 約75°未満、有利に約30°未満でのコーティングされることになる表面上でのコーティングフラックスの入射角度の維持。
コーティング中で使用された金属は、抗菌性の作用を有することが知られているものである。最も多くの医療機器にとっては、金属はまた生物学的適合性でなければならない。好ましい金属は、貴金属、Ag、Au、Pt、PdおよびIr並びにSn、Su、BiおよびZnまたは前記金属または他の金属の合金または化合物である。AgまたはAuまたは前記金属の1つまたはそれ以上の合金または化合物は、最も好ましい。
このコーティングは、医療機器の表面の少なくとも一部の上に薄膜として形成されている。該薄膜は、適当な期間に亘って、支持可能なベースの上での金属イオンの放出を得るために必要とされた厚さを上廻らない厚さを有する。これについては、前記の厚さは、コーティング中の詳細な金属(該金属は、溶解度および耐摩耗性を変動させる)およびコーティング中の原子の無秩序状態の程度(従ってコーティングの溶解度)に応じて変動することになる。この厚さは、コーティングがその意図された有用性のために該機器の寸法許容差または汎用性を損なわない程度に十分に薄くされる。典型的には、1ミクロン未満の厚さは、十分に持続された抗菌性の活性が得られることが見出された。増大された厚さは、ある期間に亘って必要とされた金属イオンの放出の程度に応じて使用することができる。10ミクロンを上廻る厚さは、製造するにははるかに高価であり、かつ通常、必要とされていない。
コーティングの抗菌性の作用は、機器が、アルコールまたは水を基礎とする電解質、例えば体液または体組織と接触する場合、従って、金属イオン、原子、分子またはクラスターを放出する場合に達成される。抗菌性の作用を生じるために必要とされる金属の濃度は、金属と金属との間で変動することになる。一般に、抗菌性の作用は、体液中、例えば血漿、血清または尿中で、約0.5?1.5μg/ml未満の濃度で達成される。
支持可能なベースの上でコーティングから金属原子、イオン、分子またはクラスターの放出を達成する能力は、多数のファクターによって定められ、この場合、例えば組成、構造、溶解度および厚さのようなコーティングの特性および機器が使用される環境の性質が含まれる。原子の無秩序状態の水準は増大されるので、単位時間当たりに放出された金属イオンの量は、増大する。例えば、T/Tm<0.5および約0.9Pa(0.7mトル)の作業ガス圧で、マグネトロンスパッタリングによって析出された銀金属薄膜は、銀イオンの約3分の1を放出するが、しかし、同じ条件下ではあるけれども、4Pa(30mトル)で析出された薄膜は10日間に亘って放出することになる。中間構造体(例えば、低い圧力、低い入射角度等)を用いて形成された薄膜は、生物学的試験によって測定されたように、前記の値に対して中間のAg放出値を有する。こうして、本発明によるメタリックコーティングの制御された放出を生じる方法が得られる。無秩序状態の程度が低いと、緩慢な放出コーティングが得られ、他方、無秩序状態の程度が高いと、迅速な放出コーティングが得られる。
連続的で均質なコーティングについては、全体の溶解に必要とされた時間は、薄膜の厚さおよび該コーティングがさらされる環境の性質の相関関係にある。厚さの点での関係は、ほぼ線状であり、即ち、薄膜の厚さが2倍に増大すれば、寿命は約2倍に延びることになる。
また、変性された構造を有する薄膜コーティングを形成することによってコーティングからの金属放出を制御することも可能である。
例えば、析出時間の50%については作業ガス圧は低く(例えば、2Pa(15mトル))、滞留時間については作業ガス圧は高かったので(例えば、4Pa(30mトル))、マグネトロンスパッタリングによって析出されたコーティングには、金属イオンの迅速な初期放出があり、次により長い期間の緩慢な放出がある。コーティングの前記の型は、尿用カテーテルのような機器に対して、著しく影響を及ぼすものであり、中間体の抗菌性の濃度を達成するためには、初期の迅速な放出が必要とされ、次に数週間の期間に亘って金属の濃度を保持するためには低い放出率が必要とされている。
蒸着の間に使用された支持体温度は、コーティングが周囲温度または使用されることになる温度(例えば、体温)に昇温されるので、コーティングのアニーリングまたは再結晶化が行われる程度に低いものであってはならない。この許容可能なΔTは、析出の間の支持体温度と、使用の最終温度との間の温度差であり、金属と金属との間で変動することになる。最も好ましいAgおよびAuの金属には、好ましくは、-20ないし200℃、更に有利に-10℃ないし100℃の支持体温度が使用される。
また、原子の無秩序状態は、本発明によれば、複合体の金属材料を製造することによって達成することができ、該複合体の金属材料は、抗菌性金属とは異なる原子または分子を有する金属マトリクス中に1つまたはそれ以上の抗菌性金属を含有する材料である。
複合材料を製造するための本発明者らの技術は、抗菌性金属を、Ta、Ti、Nb、Zn、V、Hf、Mo、Si、Alから選択された1つまたはそれ以上の他の不活性の生物学的適合性の金属および前記金属または他の金属元素、典型的には他の遷移金属の合金と一緒に同時にかまたは逐次的に析出することである。かかる不活性金属は、析出の間に原子の無秩序状態を生じる抗菌性金属の原子半径とは異なる原子半径を有するものである。また、前記の種類の合金は、原子の拡散を減少させるために供給することができ、従って、無秩序状態にされた構造を安定化することができる。抗菌性金属および不活性金属のそれぞれの配置のための複合標的を有する薄膜析出装置は、有利に利用される。層が逐次的に析出される場合、不活性金属の層は、抗菌性金属マトリクスの中で、例えば島状構造のように非連続的でなければならない。不活性金属に対する抗菌性金属の最終的な割合は、約0.2を上回るものでなければならない。最も有利な不活性金属は、Ti、Ta、ZnおよびNbである。また、望ましい原子の無秩序状態を達成するために、抗菌性金属の1つまたはそれ以上の酸化物、炭化物、窒化物、硫化物、硼化物、ハロゲン化物または水素化物および/または不活性金属の1つまたはそれ以上の酸化物、炭化物、窒化物、硫化物、硼化物、ハロゲン化物または水素化物からなる抗菌性コーティングを形成することも可能である。
本発明の範囲内での別の複合材料は、反応材料を抗菌性金属の薄膜の中に、物理的蒸着技術によって、反応により同時にかまたは逐次的に析出することによって形成される。この反応した材料は、抗菌性金属および/または不活性金属の酸化物、窒化物、炭化物、硼化物、硫化物、水素化物またはハロゲン化物であり、その場で、適当な反応物または同じもの(例えば、空気、酸素、水、窒素、水素、硼素、硫黄、ハロゲン原子)を含有するガスを析出室の中に注入することによって形成される。また、前記ガスの原子または分子は、原子の無秩序状態を生じさせるために金属薄膜の中に吸着されるかまたはトラップされてもよい。この反応物は、同時析出のための析出の間に連続的に供給されてもよいかまたは逐次的な析出に備えるために搏動されてもよい。反応生成物に対する抗菌性金属の最終的な割合は、約0.2を上回るものでなければならない。空気、酸素、窒素および水素は、特に好ましい反応物である。
複合コーティングを製造するための上記の析出技術は、前記の低い支持体温度、高い作業ガス圧および低い入射角度の条件を用いてかまたは用いずに使用することができる。前記条件の1つまたはそれ以上は、コーティング中に形成された原子の無秩序状態の量を保持し、かつ増大させるのに好ましい。
有利に、本発明による抗菌性に析出させる前に、従来技術で公知であるように、被覆することになる機器の上に粘着層を施してもよい。
抗菌性の粉末
ナノサイズの結晶性の粉末および迅速に凝固したフレークまたは箔から製造された粉末を含めて抗菌性の粉末は、溶解度を増大させるように原子の無秩序状態とともに形成することができる。純粋な金属、金属合金または金属酸化物または金属塩のような化合物としての粉末は、原子の無秩序状態を付与するために、機械的に加工することができるかまたは圧縮することができる。この機械的に付与された無秩序状態は、低い温度(例えば、材料の再結晶化の温度を下廻る温度)の条件下に、アニーリングまたは再結晶化が行われないことを保証するために操作される。前記温度は、金属の間で変動し、かつ合金または不純物の含量とともに増大する。
本発明による抗菌性の粉末は、種々の形で、例えば局所用のクリーム状、塗布剤または粘着性のコーティングで使用されてもよい。また、該粉末は、医療機器またはそのコーティング用の材料として使用されることになる重合体マトリクス、セラミックマトリクスまたはメタリックマトリクスの中に配合されてもよい。
抗菌性金属の微粒状またはナノサイズの結晶性材料
蒸気相から微粒状またはナノサイズの結晶性材料を形成するための方法は、よく知られており、かつ文献中に記載されている。例えば、ナノサイズの結晶性材料は、変性された標準不活性ガス凝縮技術によって形成することができる。析出されることになる材料は、電気的に加熱された舟形容器(boat)または坩堝から、約5?7トルの圧力を有する不活性ガス雰囲気、例えばアルゴンまたはヘリウムの中へ蒸発される。該舟形容器の温度は、材料の実質的な蒸気圧を得るのに十分な高さでなければならないことが重要である。金属に関しては、金属の融点を約100℃上回る温度は、典型的には、適正な蒸気圧を得ることになる。作業ガス圧原子を有する原子間衝突のために、材料の蒸発した原子は、その運動エネルギーを喪失し、かつ(液体窒素冷却されて)約77Kで保持された冷却指状部材または支持体の上に、約20nm未満の粒度の密集していない粉末または脆いフレークまたは薄膜の形で凝縮する。粉末またはフレークについては、高真空(5×10-6Pa未満)が回復され、かつ粉末またはフレークは、冷却指状部材から剥離され、かつコールドトラップの中に捕集される。
同様に、微粒状の材料は、従来技術で公知であるようなガス凝縮/蒸着法により製造される。これは、典型的には、粒子を有利に5000nm未満の望ましい寸法に粗大化させるために、冷却指状部材または支持体温度およびガス圧を変化させることによって達成される。
公知技術水準の方法による抗菌性金属の微粉末/nサイズの結晶性粉末は、試験されており、かつ十分な抗菌性の効力を有していないことが見出された。十分に抗菌性の作用を生じる水準で、材料の中に原子の無秩序状態を導入するためには、析出されることになる抗菌性金属、合金または化合物は、原子の無秩序状態がマトリクス中に生じかつ保持されるような条件下に、異なる材料(ドーパント)の原子または分子を用いて、マトリクス中に同時にかまたは逐次的にかまたは反応により析出される。異なる材料は、不活性の生物学的適合性金属、例えばTa、Ti、Nb、B、Hf、Zn、Mo、SiおよびAl、最も有利にTa、TiおよびNbから選択されている。また、この異なる材料は、抗菌性金属または生物学的適合性金属のいずれか一方または双方の酸化物、窒化物、炭化物、硼化物、硫化物およびハロゲン化物である。もう1つの選択肢は、異なる材料を作業ガス雰囲気から、反応性の析出によってかまたは作業ガス雰囲気から原子または分子を吸着するかまたはトラップすることによってマトリクスの中へ導入することである。酸素、窒素、水素、硼素、硫黄およびハロゲン原子を含有する作業ガス雰囲気が使用されてもよい。酸素を含有する作業ガス雰囲気は、抗菌性金属のマトリクスがトラップされた酸素および抗菌性金属の酸化物のいずれか一方または双方を含有しているので最も好ましい。
本発明の抗菌性の粉末を製造するためのもう1つの技術は、前記の方法で、原子の無秩序状態を有するコーティングを不活性で、有利に生物学的適性の粒状材料、例えばタルク、ベントナイト、コーンスターチまたはセラミック、例えばアルミナの上に形成することである。この粒子は、抗菌性金属コーティングについての上記と同様に原子の無秩序状態を生じる条件下で、物理的蒸着技術によって被覆されてもよい。また、この粉末は、蒸着法を適合させることによって、例えば抗菌性の材料の蒸気を、該粉末の固定された多孔質床に導通させるか、粉末床を抗菌性金属蒸気相中で流動させるかまたは該粉末を、抗菌性の材料の蒸気より降下させることによって被覆することができる。全ての場合において、原子の無秩序状態の望ましい程度を生じるために、この粉末を冷却することおよび/または作業ガス雰囲気を、異なる材料(例えば酸素)を含有するように変化させることができた。
抗菌性の材料の活性化
上記の任意の方法によって形成された原子を無秩序状態で有する抗菌性の材料(抗菌性金属の粉末、ナノサイズの結晶性粉末、箔、コーティングまたは複合コーティング)の照射は、抗菌性の作用を更に活性化するかまたは向上させることになる。従って、低い水準の原子の無秩序状態を有する材料であっても、抗菌性の水準に活性化することができる。
照射は、β線、γ線およびX線を含めた放射線の任意の低い線状エネルギー伝達形態を用いて実施される。1Mrad以上の線量でのγ線は、好ましいものである。γ線は、医療機器の許容できる殺菌法であるので、活性化および殺菌は、本発明の照射法により同時に達成することができる。
照射工程は、有利に、照射されている抗菌性の材料が、入射線に対して通常(平行よりもむしろ)垂直に配向されいるように行われている。抗菌性の作用のもう1つの向上は、有利に、抗菌性の材料に隣接しているかまたは周囲を挟み込んでいる誘電材料を用いて照射工程を行うことによって達成することができる。誘電体の例には、Si、Ti、TaおよびAlの酸化物が含まれる。酸化珪素表面は、好ましいものである。誘電性材料は、抗菌性コーティングの中へ電子を前方散乱させることが信じられている。
前記のことによって拘束されずに、照射工程が、抗菌性の材料に、以下の変化の1つまたはそれ以上を生じることが信じられている:
1)更に、点欠陥のような原子の無秩序状態を生じ;
2)抗菌性の材料の表面への酸素吸着/化学吸着を向上させ;
3)トラップされたドーパント原子または分子、例えば酸素を、O+またはO2-に活性化し;
4)表面で中断されたかまたは懸垂された結合を生じさせる。
第2および第3に意図されたメカニズムについては、酸素吸着/化学吸着および/または活性化が、抗菌性金属表面の中または上でのO2、O+またはO-種の過飽和濃度を生じることが可能であり、該抗菌性金属表面が、酸化物および水酸化物を含める抗菌性金属の種々の化学種の発生により、水性の環境の中へ抗菌性金属または該抗菌性金属種を更に迅速に溶解させることになる。
銀錯イオンを形成する銀材料
本発明によれば、材料がアルコールまたは水を基礎とする電解質と接触する場合に、Ag+、Ag2+およびAg3+以外の銀錯イオンを形成する銀材料が製造される。抗菌性の作用を証明して見せた銀錯イオンの例には、Ag(CN)2-、AgCN(aq)(イオン対)、Ag(NH3)2+、AgCl2-、Ag(OH)2-、Ag2(OH)3-、Ag3(OH)4-およびAg(S2O3)23-が含まれている。銀錯イオンを形成する前記の銀材料は、例えば医療機器用の抗菌性コーティング、医療または製薬学的使用のための抗菌性の粉末、防汚塗料コーティングまたは組成物、フィルタ用の抗菌性コーティング等として広く使用されている。
本明細書中および請求の範囲中で使用されている“Ag+、Ag2+およびAg3+以外の銀錯イオンを形成する銀材料”という句は、材料がアルコールまたは水を基礎とする電解質に接触する場合に、Ag+、Ag2+およびAg3+、銀錯イオン以外のイオンの1つまたはそれ以上を形成する銀材料を除外することを意図するものではない。Ag+、Ag2+およびAg3+の表記は、溶液中の前記イオンのことであり、かつ溶媒和した形を含むものである。本明細書中および請求の範囲中で使用されている銀錯イオンという語は、銀イオンの減少を防ぐために、強力な酸化剤、例えば過硫酸塩および過ヨウ素酸塩を用いて安定化された銀イオンを含めることを意図するものではない。
本発明の抗菌性コーティング、粉末および箔は、上記のように原子の無秩序状態を用いて生じた場合には、抗菌性の作用を生じるようにAg+以外の銀錯イオンを形成する銀材料の例である。かかる銀材料が、アルコールまたは水を基礎とする電解質に接触する際に、形成されてもよい銀錯イオンは、陰イオン:Ag(OH)2-、Ag2(OH)3-およびAg3(OH)4-の1つまたはそれ以上であると信じられている。
また、銀錯イオンを形成する銀材料は、銀金属、化合物または塩を、銀錯体に対して望ましいものである、陽イオン種、陰イオン種または中性種の過剰量を含有する環境の中に導入することによって製造されてもよい。例えば、銀錯陰イオンAgCl2-は、AgNO3のような銀塩を、Cl-イオンの濃度を高められた水性媒体中に入れることによって発生させることができる。AgNO3/NaClまたはAgCl/NaCl混合物、溶液または懸濁液は、AgCl2-イオンから形成することができる。有利に、銀粉末は、本発明により、原子の無秩序状態を有するように製造されているものであるが、しかしまた、塊状銀も、前記方法により活性化することができる。塊状銀粉末、微粒状(140nm未満)およびナノサイズの結晶性(20nm未満)の粉末を使用してもよい。同様に、イオンAg(NH3)2+は、過剰量の水酸化アンモニウムに銀塩を添加することによって水溶液中で形成させることができる。イオンAg(S2O3)23-は、過剰量のチオ硫酸ナトリウムに銀塩を添加することによって水溶液中で形成させることができる。イオンAg(CN)2-は、シアン化銀に過剰量のシアン化カリウムを添加することによって水溶液中で形成させることができる。
銀錯イオンを形成する銀材料は、粉末、懸濁液、溶液、軟膏剤またはコーティングを含めた多くの形態で使用するために調製することができる。例えば、AgCl2-を発生させるための製薬学的組成物は、有利に1つが原子の無秩序状態を有する、AgNO3/NaCl塩の混合物またはNaClと銀粉末との混合物として調製することができる。銀材料の前記の混合物は、溶液、懸濁液または軟膏剤として、殺菌水溶液または食塩液および製薬学的に認容性の担持剤、希釈剤、賦形剤等を用いて予備調製してもよい。また、銀材料は、最終消費者による後の調製のために、銀粉末/NaCl塩またはAgNO3/NaClの混合物として提供されてもよい。
抗菌性銀材料の物理的/化学的特性
金属種の放出を向上させるべく、本発明により、原子の無秩序状態を有するように変性された金属材料は、標準的な秩序を持った結晶状態での材料と比べた場合、新規の物理的特性を示すものである。本発明により製造された銀材料は、以下の新規の特性を有するものとして特性決定されている:
- プラスの静止電圧、Erest、1MのKOH中で、SCE参照電極に対して測定した場合;
- 0.33、最も有利に0.30未満の、絶対温度K、(Trec/Tm)での再結晶化の温度対融点の有利な割合;
- 約140℃未満の再結晶化の有利な温度;および
- 約200nm、更に有利に140nm未満、最も有利に90nm未満の有利な粒度。
XRD、XPSおよびSIMS技術による銀材料の分析は、化学的性質および銀金属としての薄膜の含量、および材料が、作業ガス中の酸素を用いて形成されている場合には、酸化銀およびトラップされた酸素の1つまたは双方の含量を確認するものである。TEM分析により、銀材料の双晶の成長が明らかであり、該双晶は、材料が再結晶化の温度を上回ってアニール化される場合には、アニール化された双晶にされる。
本発明は以下の実施例によって詳細に説明されるが、本発明はそれによって制限されるものではない。
例1
医療用縫合材料寸法2/0、ポリエステルブレードに、平面の銀および銅マグネトロンカソードから出力0.5KWで作業圧力0.9Pa(7mトル)または4Pa(30mT)および0.5を下廻るT/Tm比でアルゴンガスを使用して、直径20.3cm(8インチ)のマグネトロンスパッタリングによって被覆して、Ag-Cu合金を0.45ミクロンの厚さで表面上に形成した。ガスの全質量流量は700sccm(standard cubic centimeters per minute)であった。
該コーティングの抗菌性の作用を抑制試験の帯域で試験した。アールの塩(Earle’s salt)およびL-グルタミンを有するイーグル基本培地(BME)を、ペトリ皿に分配する(15ml)前に牛/血清(10%)および1.5%の寒天で変性した。寒天を有するペトリ皿を、スタフィロコッカス・アウレウス(Staphylococcus aureus)ATCC#25923の群生を用いて接種される前に表面を乾燥させた。この接種物を、製造者の方法により再構成したバクトロール ディスクス(Bactrol Discs)(Difco,M.)から製造した。接種後直ちに、試験されるべき材料またはコーティングを寒天の表面上に置いた。この皿を37℃で24時間培養した。この培養期間の後に抑制帯域を測定し、かつ補正された抑制帯域を計算した(補正された抑制帯域=抑制帯域-寒天と接触している試験材料の直径)。
この結果は被覆されていない継ぎ目の上に抑制帯域を示さず、0.9Pa(7mトル)で被覆された継ぎ目の周囲0.5mm未満の帯域および4Pa(30mトル)で被覆された継ぎ目の周囲13mmの帯域を示した。明らかに本発明により被覆された継ぎ目は十分に顕著でかつ効果的な抗菌性の作用を示す。
例2
この実施例は銀金属をマグネトロンスパッタリング装置および異なる作業ガス圧および入射角度(すなわちスパッタされた原子の進路と支持体との間の角度)を用いてシリコーンウェーハの上に析出させる場合に得られる表面構造を説明するために包含されている。全ての他の条件は以下の通りであった:標的は直径20.3cmの平面の銀マグネトロンカソードであり;出力は0.1KWであり;析出速度は、200Å/分であり;支持体(ウェーハ)の温度対銀の融点(1234°K)の比、T/Tmは0.3未満であった。全質量流量700sccmで0.9Pa(7mトル)(金属コーティングのための標準的な作業圧力)および4Pa(30mトル)のアルゴンガス圧を使用した。前記圧力のそれぞれでの入射角度は90°(標準的な入射)、50°および10°であった。コーティングは約0.5ミクロンの厚さを有していた。
生じた表面を電子顕微鏡走査によって観察した。アルゴンガス圧を0.9Pa(7mトル)から4Pa(30mトル)へ増大させるにともなって粒度は減少し、空隙容積は一層増大した。入射角度を減少させた場合、粒度は減少し、かつ粒界は一層明らかになった。0.9Pa(7mトル)のアルゴン圧および10°の入射角度で、粒状物の間の多少の空隙の徴候があった。この入射角度はガス圧を4Pa(30mトル)に増大させた場合に表面位相に対してより大きな影響を及ぼした。90°で粒度は60?150nmで変動し、かつ粒状物の多くは幅15?30nmである中間粒状物の空隙の間隔によって分割されていた。この入射角度を50°に減少させた場合に粒度は30?90nmに減少し、かつ空隙容積は実質的に増大した。10°で粒度は約10?60nmに減少し、かつ空隙容積は再度増大した。
表面の形態学および位相学における観察されたナノメートル尺度の変化は銀金属中の原子の無秩序状態の徴候である。前記のことによって拘束されるものではないが、かかる原子の無秩序状態は不整合性原子によって生じた内部応力および表面のざらつきを増大することにより化学的活性の増大を生じると確信される。増大された化学的活性は体液のような電解質と接触する場合にコーティングの溶解度の増大された水準を招くと確信される。
該コーティングの抗菌性の作用を例1で実施されたように抑制帯域の試験を用いて評価した。それぞれの被覆されたシリコーンウェーハを個々のプレートの上に載置した。結果を固体の銀(例えば99%を上廻る銀)シート、ワイヤーまたは膜を試験した場合に達成された抑制帯域と比較した。この結果を第1表に要約した。純粋な銀機器および0.9Pa(7mトル)で銀をスパッタしたコーティングは任意の生物学的作用を生じないことは明らかである。しかしながら、標準的な作業ガス圧4Pa(30mトル)よりも高いガス圧で析出された該コーティングは、ディスク周辺の実質的な抑制帯域によって示されたと同様に抗菌性の作用を示した。入射角度を減少させると、より高いガス圧と組み合わせた場合に抗菌性の活性に対して最も大きな影響を及ぼした。


例3
シリコーンウェーハを、標準的な入射で0.9Pa(7mトル)および4Pa(30mトル)の作業ガス圧で直径20.3cmの平面の銀および銅マグネトロンカソードを用いてマグネトロンスパッタリングによって被覆し、AgおよびCuの合金(80:20)を製造し、この場合、他の全ての条件は例2で実施されたものと同じである。例2のように被覆をSEMによって観察した場合、高い作業ガス圧で形成されたコーティングは低い作業ガス圧で形成されたコーティングよりも小さな粒度および大きな空隙容積を有していた。
50:50のAg/Cu合金として同様に形成されたコーティングを例1で実施された抑制帯域試験を用いて抗菌性の活性について試験した。結果を第2表に要約した。低い作業ガス圧(0.9Pa(7mトル))で析出されたコーティングは最小の抑制帯域を示し、他方高い作業ガス圧(4Pa(30mトル))で析出されたコーティングは広い抑制帯域、抗菌性の活性の兆候を生じた。

例4
本発明によるコーティングを不特定の時間に亘って溶液中に放出された銀イオンの濃度を測定するために試験した。1cm2のシリコーンウェーハディスクを例2に記載されたように、0.9Pa(7mトル)および4Pa(30mトル)および標準的な入射で5000Åの厚さに銀で被覆した。Nickel他、Eur.J.Clin.Microbiol.第4(2)巻第213?218頁、1985年の方法を用いて滅菌した合成の尿を製造し、試験管(3.5ml)中に分配した。被覆されたディスクをそれぞれの試験管の中に置き、かつ37℃で種々の時間培養した。種々の期間後に該ディスクを除去し、濾過された合成の尿のAg含量を中性子放射化分析を用いて測定した。
この結果を第3表に記載した。この表は0.9Pa(7mトル)または4Pa(30mトル)でディスク上に析出したコーティングから不特定の時間に亘って放出されたAgの比較量を示す。高い圧力で析出されたコーティングは低い圧力で析出されたものよりも可溶性であった。この試験は静的試験であることが注意されなければならない。従って、銀の水準は一定の引渡しが存在する体液中の場合ではないような時間に亘って増大する。

註:薄膜を、標準的な入射(90°)で析出させた
1-ND(検出不能)<0.46μg/ml
例5
この実施例は別の貴金属、Pdから形成された本発明によるコーティングを説明するために包含されている。このコーティングをシリコーンウェーハの上に、例2に記載されたように、0.9Pa(7mトル)または4Pa(30mトル)の作業ガス圧と90°および10°の入射角度を用いて5000Åの厚さに形成させた。被覆されたディスクを実質的に例1に記載されたように、抑制帯域の試験によって抗菌性の活性について評価した。被覆されたディスクを、寒天がディスク上に1mmの表面コーティングを形成するようにコーティング面を上にして置いた。培地を固体化させかつ表面を乾燥させ、この後細菌の群生を該表面上に拡散させた。この皿を37℃で24時間培養した。この後成長の量を視覚により分析した。
結果を第4表に記載した。高い作業ガス圧の場合、コーティングの生物学的活性は、低い圧力で析出したコーティングよりもはるかに大きかった。入射角度を変化させる(減少させる)と、ガス圧が低い場合には、ガス圧が高い場合よりも広い範囲でコーティングの抗菌性の作用を向上させた。


例6
この実施例は、コーティングの抗菌性の活性に対する銀の析出温度の作用を説明するために包含されている。銀金属をマグネトロンスパッタリング装置を用いてラテックスフォーリーカテーテル(latex Foley catheter)の2.5cmの区間の上に析出させた。作業条件は以下の通りであった;析出速度は毎分200Åであり;出力は0.1kWであり;標的は直径20.3cmの平面の銀マグネトロンカソードであり;アルゴン作業ガス圧は4Pa(30mトル)であり;全質量流量は700sccmであり;支持体の温度対金属銀コーティングの融点の比、T/Tmは0.30または0.38であった。この実施例の場合、入射角度は支持体が粗面であるかまたは丸みを帯びているので変動可能であった。つまり、入射角度は周囲を包囲しておよびより詳細には、多数の表面の形状をもつ側面および上面を交差して変動したのである。抗菌性の作用を例1に記載されたように抑制帯域の試験によって試験した。
結果は0.5の補正された抑制帯域および管材料の周囲16mmが、それぞれ0.38および0.30のT/Tm値で被覆されたことを示した。低いT/Tm値で被覆されたフォーリーカテーテルの区間は、高いT/Tm値で被覆されたものよりも効力があった。
例7
この実施例は、市販のカテーテル上でのDCマグネトロンスパッタリングによって形成された抗菌性コーティングを記載するために包含されている。テフロンで被覆されたラテックスフォーリーカテーテルを、DCマグネトロンスパッタリングによって、第5表に記載された条件を用いて表面上に99.99%の純粋な銀を被覆した。使用した作業ガス圧は市販のArおよび99/1重量%のAr/O2であった。
該コーティングの抗菌性の作用を抑制帯域の試験によって試験した。ミュラーヒントン(Mueller Hinton)の寒天をペトリ皿の中に分配した。この寒天プレートを、スタフィロコッカス・アウレウス1ATCC#25923の群生を接種する前に表面を乾燥させた。この接種物を製造者の方法により再構成したバクトロール ディスクス(Difco,M.)から製造した。接種後直ちに試験されるべき被覆された材料を寒天の表面上に置いた。この皿を37℃で24時間培養した。この培養期間の後に抑制帯域を測定し、かつ補正された抑制帯域を計算した(補正された抑制帯域=抑制帯域-寒天と接触している試験材料の直径)。
この結果は、被覆されていない試料について抑制帯域を示さず、市販のアルゴン中0.7Pa(5mT)の作業ガス圧でスパッタされたカテーテルについて1mm未満の補正された帯域を示した。11mmの補正された抑制帯域を、5.3Pa(40mT)の作業ガス圧を用いて99/1重量%のAr/O2中でスパッタされたカテーテルについて報告した。XRD分析は、1%の酸素中でスパッタされたコーティングが結晶性のAg薄膜であったことを示した。明らかにこの構造体は、被覆されたカテーテルについて向上した抗菌性の作用を生じた。


例8
この実施例は、アーク蒸発、ガス散乱蒸発(加圧プレーティング)および反応性アーク蒸発によって形成された銀コーティングを記載する。99.99%の銀の蒸発を、約21℃の開始時の支持体温度でシリコーンまたはアルミナウェーハの上に実施し、この場合、以下のパラメーターを使用した:
バイアス:-100V
電流:毎時20アンペア
入射角度:90°
作業ガス圧:0.001Pa(0.01mT)(アーク)、Ar/H296:4で3.5Pa(26mT)(ガス散乱蒸発)およびO2で3.5Pa(26mT)(反応性アーク蒸発)
補正されたZOIは、真空(アーク)で被覆されたウェーハについて観察されなかった。Arおよび4%の水素を含有する作業ガス雰囲気を用いる加圧プレーティングは6mmのZOIを生じ、他方純粋な酸素の作業ガス雰囲気(反応性アーク)は8mmのZOIを生じた。約4000オングストロームの薄膜の厚さを生じた。この結果は、アーク蒸発雰囲気中の水素および/または酸素のようなガスの存在がコーティングに向上した抗菌性の効力を有するようにしたことを示している。
例9
この実施例は、抗菌性の作用を生じさせるための複合材料を説明するために包含されている。一組のコーティングを、以下に記載されたように酸化亜鉛をシリコーンウェーハの上へRFマグネトロンスパッタリングすることによって生じた。この酸化亜鉛コーティングは抑制帯域を示さなかった。
AgおよびZnOのコーティングを、以下の条件により、75/25重量%の比で、Agの層をZnOの層と一緒に逐次的にスパッタリングすることによって3300オングストロームの全体の厚さに析出させた。このコーティングは、酸化亜鉛層が約100オングストロームの厚さであった場合には抑制帯域を有していないことを示した。しかしながら、Agマトリクス(例えば複合薄膜)中のZnOの非連続にまでの極めて薄い層(50オングストローム未満)の島からなる薄膜は8mmの補正された抑制帯域を有していた。
ZnOを析出するために使用された条件は次の通りであった:標的、直径20.3cmZnO;作業ガス=アルゴン;作業ガス圧=4Pa(30mT);カソードとアノードとの間隔=40mm;開始時の支持体温度=21℃;出力=RFマグネトロン0.5kW。
Agを析出するために使用された条件は次の通りであった:標的、直径20.3cmAg;作業ガス=アルゴン;作業ガス圧=4Pa(30mT);カソードとアノードとの間隔:40mm;開始時の支持体温度=21℃;出力=DCマグネトロン0.1kW。
例10
この実施例は、標準的な抑制帯域試験によって示された抗菌性の効力に対する銀と金の粉末の冷間加工およびアニーリングの作用を示す。この種の粉末の冷間加工は、抗菌性の活性を生じるイオンの放出を補助する原子の無秩序状態を有する欠陥表面構造を生じる。前記欠陥構造の抗菌性の作用は、アニーリングによって除去することができる。
ナノサイズの結晶性の銀粉末(結晶寸法約30nm)を粘着テープの上に散布し、かつ試験した。5mmの抑制帯域が得られ、この場合、例7に記載された方法を用いた。ナノサイズの結晶性のAg粉末のペレット0.3gを、275700kPa(キロパスカル)(40000プサイ)で圧縮した。このペレットは、抗菌性の活性について試験した場合、9mmの抑制帯域を生じた。ナノサイズの結晶性の銀粉末をボールミル中で30秒間機械的に加工した。加工した粉末を粘着テープの上に散布し、かつプレートに供給し、上記の条件で該粉末をペレットに圧縮し、かつプレートの上に該ペレットを載置することによって生じた粉末を抗菌性について試験した。観察された抑制帯域は、それぞれ7および11mmであった。加工された粉末から圧縮されたペレットを、500℃で1時間真空条件下にアニール化した。3mmの減少した抑制帯域をアニール化したペレットについて観察した。
この結果は、ナノサイズの結晶性の銀粉末がそれ自体少ない抗菌性の作用を有するけれども、ボールミル中で粉末を機械的に加工するかまたは該粉末をペレット中に圧縮することによって原子の無秩序状態を導入することによって、向上した抗菌性の作用を有することを示した。この抗菌性の作用は500℃でのアニーリングによって著しく減少した。従って、機械的加工の条件は、拡散させる高い温度のような条件を含んではならないかまたは続けられてはならない。冷間の機械的加工条件により、好ましくは室温で作業するかまたは液体窒素中で粗砕するかまたは微粉砕することによって拡散が制限される。
銀粉末、粒度1ミクロンを上記と同じ方法で試験した。Ag粉末を粘着テープの上に散布し、かつ抑制帯域について試験した。抑制帯域は観察されなかった。この粉末をボールミルで30秒間加工し、かつ粘着テープの上に散布した。6mmの抑制帯域を、テープの上の粉末の周囲に観察した。Ag粉末(現状のままかまたはボールミル中での機械的加工後に)を0.3gのペレットに275700kPa(40000プサイ)を用いて圧縮した場合、それぞれ5mmおよび6mmの抑制帯域を観察した。ボールミルで粉砕された粉末から形成され、かつ500℃で1時間アニール化されたペレットは、抗菌性の活性を著しく減少した。初めペレットはいくぶんかの活性(4.5mmの抑制帯域)を有していたが、ペレットを2回試験した後には抑制帯域は観察されなかった。アニール化されなかった対照ペレットは、試験を14回繰り返した後でさえも4mmを上廻る抑制帯域を生じ続けた。このことは、アニーリング工程、引き続く機械的加工が、粉末からの抗菌性の銀種の維持可能な放出を制限することを示す。
粉末として供給されたナノサイズの結晶性の金(20nmの結晶)を、抗菌性の作用について、該粉末を粘着テープの上に散布し、かつ抑制帯域試験を用いることによって試験した。抑制帯域は、ナノサイズの結晶性の金粉末について記録されなかった。この金粉末を、0.2gのペレットに275700kPa(40000プサイ)を用いて圧縮した。10mmの抑制帯域を観察した。圧縮されたペレットを、引続き500℃で1時間真空アニール化した場合、抑制帯域が0mmであることを見出した。
この結果は、溶解度、従って金粉末の抗菌性の効力を、ペレット中へナノサイズの結晶性材料を圧縮するような機械的加工過程によって向上させることができることを示した。抗菌性の活性はアニーリングによって除去することができる。冷間加工が好ましい。
2?5ミクロンおよび250ミクロンの粒度の粉末を含めた他の金粉末は、上記の機械的加工条件下で抗菌性の作用を示さなかった。ナノサイズの結晶性の金粉末の小さな粒度は、機械的加工とともに、望ましい抗菌性の作用を生じる重要な補助要因であったということが確信される。
例11
この実施例は、反応性スパッタリングによって形成された複合体の抗菌性コーティング(複合薄膜の別の例)を記載するために包含されている。例7は銀の抗菌性コーティングがアルゴンおよび1%の酸素中でのスパッタリング(0.5kW、5.3Pa(40mトル)、アノード/カソードの間隔100mmおよび20℃で11mmの抑制帯域を生じた)によって得られることを示す。
アルゴンおよび20重量%の酸素の作業ガスを以下に記載された条件下に抗菌性コーティングをスパッタするために使用した場合、抑制帯域は6?12mmの範囲に及ぶ。このことは、蒸着の間の反応性雰囲気の供給量が析出過程のパラメーターの広い範囲に亘って抗菌性の薄膜を生じる結果を有することを示す。


例12
この実施例は本発明のコーティングが細菌の広いスペクトルに対して抗菌性の作用を有することを示す。
18の属および55の種を含めた171個の異なる細菌サンプルの全体は、Provincial Laboratory of Public Health for Northern Albertaより得られた。前記の試料を急速冷凍して20%のスキムミルク状にし、かつ-70℃で数か月から数年の期間貯蔵した。標準的なキルビー・バウアー感染試験(Kirby-Bauer susceptibility testing)で使用された条件下では成長しそうになかった培養条件の面倒な生物を使用しなかった。
それぞれの凍結試料を、滅菌された綿棒を用いて引っ掻いて血液寒天プレート(BAP)に接種した。このプレートを35℃で一晩培養した。翌朝、単離された群体を新鮮なBAPの上に二次培養し、かつ35℃で一晩培養した。翌日、この生物に以下に記載されたようにキルビー・バウアー感染試験を行った。
同じ形態学的な型の4?5個の群体(群体が小さい場合には更に多数)をそれぞれのBAP二次培養基から選択し、トリプシン大豆肉汁(TSB)約5mlを含有する個別の管の中に接種した。この肉汁を35℃で約2?3時間培養した。この時間で肉汁培地の大部分の濁度は0.5のマックファルランド標準(McFarland standard)と等しいかまたは凌駕していた。より多くの混濁試料を、標準のものと視覚的に比較可能な濁度を得るために滅菌された塩水で稀釈した。濁度の視覚的評価を補助するために、管をコントラストを形成する黒線を有する白色背景に向けて判読した。
少数の生物(スタフィロコッカスおよびコリネバクテリウム(Corynebacterium))はTSB中で良好に成長しなかった。前記肉汁の濁度は、培養後に0.5のマックファルランド標準の濁度を下廻っていた。付加的にBAP二次培養基からの群体を、ほぼ標準のものの濁度にまで濁度を増大させるために前記の管に接種した。
15分以内に細菌の懸濁液の濁度を適合させ、滅菌された綿棒をそれぞれの肉汁の中に浸した。過剰量の液体を、管の縁に向けて棒を回転させることによって除去した。この接種物を、ミュラーヒントン(MH)寒天プレートへ、棒で全体の寒天表面の上の3つの方向に均等に縞をつけることによって塗布した。3個の1cm×1cmの銀で被覆された正方形の珪素ウェーハを、それぞれのMHプレートに塗布し、かつ該プレートを裏返し、かつ35℃で一晩培養した。XRD分析により銀/酸化銀複合薄膜であることが示されたこの被覆を、次の条件下にスパッタした:

対照生物のBAP培地は、Provincial Laboratoryより得られ、次のものを包含していた:スタフィロコッカス・アウレウスATCC25923;シュードモナス・アエルギノーザ(Pseudomonas aeruginosa)ATCC27853;エシュリキア・コリ(Escherichia coli):ATCC25922;およびMH寒天の品質を検査するためにエンテロコッカス・ファエカリス(Enterococcus faecalis)ATCC29212。前記の培地を試験生物と同様の方法で処理したが、銀被覆されたウェーハよりも標準的な抗菌性ディスクをMH寒天の細菌の群生に塗布した。前記の生物はMH寒天が標準的なZOI試験に適していたことを示した。
35℃での培養の16?18時間後に、銀ウェーハまたは抗菌性のディスクの周囲の抑制帯域をほぼmm単位まで測定した。補正された帯域を、全体の帯域の寸法からウェーハの寸法(1cm)を差し引くことによって計算した。代表的な抑制帯域の結果を第7表に示した。


例13
この実施例は本発明のコーティングのための粘着層としてのタンタルの使用を示す。タンタルは、中間層の形成の場合に支持体への薄膜の粘着を向上させる材料としてよく知られている。この実施例の場合、ステンレススチール(316)(1×1cm)およびシリコーン(1.7×0.9cm)チップの群を包含する試験区間およびラテックス管材料の区間(5cm)をエタノールで洗浄し、次に試験区間の半分を、抗菌性の銀薄膜が該試験区間の上に析出される前に、Taの薄層(約100オングストローム)で(スパッタリングにより)被覆した。試験区間の第2群を抗菌性のAg薄膜だけで被覆した。コーティング条件は以下に記載した。全ての試験区間は同様の抗菌性の活性を有し、Taを被覆された試験区間は処理されなかった試験区間よりもはるかに良好な粘着特性を有していた。粘着特性を、粘着性を測定するための標準的な試験法であるASTM法D3359?87を用いて測定した。

例14
DCマグネトロンスパッタリングを、直径20.3cm、99.98%の純粋なカソードからシリコーンおよびアルミナウェーハの上に、水で加湿された市販のアルゴンを作業ガスとして用いて全質量ガス流量700sccmで銀を析出するために使用した。ガスがスパッタリング装置に入る前に、任意の自由液体を吸着させるために、ガラスウールを備えた3lの室温の水を有する2個のフラスコおよび1個の空のフラスコを通過させることによってアルゴンを加湿した。
スパッタリングの条件およびスパッタされた銀薄膜の上で実施された標準的な抑制帯域の試験結果は、以下に示される。水で処理されていないアルゴンガスを使用して析出した場合、通常抗菌性の能力を有していない銀薄膜は、作業ガスとしてのアルゴン/水蒸気混合物を用いてスパッタした場合に、8mmまでの補正された抑制帯域を生じた。

例15
この実施例は、本発明のほかの構成により放射線を用いた活性化コーティングの方法を示す。
1.9×0.7cmの連続したシリコンウェーハに以下の条件下でDCマグネトロンスパッタリングを使用して3000Å銀金属コーティングを被覆した。

被覆したウェーハを4つの群に分け、Isomedix社,Morton Grove,II,USAの60Co源から0,1,2および4Mradの異なる線量のγ-放射線を照射した。試料を一般に入射する放射線に対して垂直に置いた。照射後試料を前記の例に記載されたように、ミュラーヒントン(Difco Mi)の寒天上にS.アウレウス(ATCC#25923)を用いて標準抑制帯域試験を使用して生物学的活性(抗菌性の作用)について試験した。結果を第9表に要約した。

結果は一般に、放射線線量とウェーハに対する観察された生物学的応答との長い線量応答関係を示す。これは、γ-放射線が本発明によるコーティングを更に活性化し、抗菌性の作用を増大することを示す。
一般に入射する放射線に平行に配置された抗菌性薄膜を使用して実験を繰り返した。この配置は、照射されなかった制御に対して抑制帯域の増加が認められない程度に抗菌性コーティングの活性化水準をかなり減少した。
例16
この例は、照射中に材料に隣接する絶縁材料を使用してγ-放射線を用いた本発明による抗菌性コーティングの活性化を説明するために包含される。
高密度ポリエチレンメッシュの多くの2.5cm×2.5cm片(熱処理して巻き取られた装着物に使用される)に銀金属を例15に記載されたと同じ条件下で、ただし出力0.1kWでスパッタ被覆した。引き続き被覆したメッシュに例15に記載されたように4Mradで(垂直の配置で)照射した。更に例15に記載されたように生物学的活性を試験した。対照メッシュ試料(銀被覆した、照射していない)はZOI10mm(補正した)を生じ、照射した試料はZOI14mm(補正した)を生じた、
被覆したメッシュのほかの試料を、Alberta Microelectronics Center,Edmonton,Albertaにより供給される1000Åの熱成長した酸化物層を有する2.5cm×2.5cmの2つのシリコンウェーハに挟み込んで照射した。このメッシュ試料を生物学的活性について試験し、ZOI26mm(補正した)を生じることが判明した。前記のことによって拘束されるものではないが、シリコンウェーハが前方に散乱して抗菌性コーティングを生じる電子源を供給し、抗菌性の作用を更に増大することが確信される。
塊状銀金属シートを試験してγ-放射線により活性化して抗菌性の作用を生じるかを決定した。塊状銀金属シートを空気中で140℃で90分アニール化し、引き続き4Mradの線量を照射した。試料を生物学的活性について試験したがZOIは生じなかった。この結果は標準的な秩序の結晶状態で銀塊状物が本発明の方法により活性化されるために原子の欠陥が少なすぎることを示す。
例17
この例は、抗菌性の作用を生じるために不十分な水準で原子の無秩序状態を有する抗菌性コーティングが本発明によりγ-放射線により更に活性化できることを示すために包含されている。
銀薄膜を例15に記載されたように、ただしガス圧を5.3Pa(40mトル)から0.7Pa(5mトル)に低下してシリコンウェーハにスパッタし、コーティング中に少ない原子の無秩序状態を生じた。引き続き銀薄膜に例15と同様に線量4Mradのγ-放射線を照射した。照射した薄膜および対照薄膜(照射していない)を生物学的活性について試験した。対照薄膜はZOI(補正した)1mmを生じるにすぎず、照射したコーティングはZOI(補正した)10mmを生じた。この結果は抗菌性の作用を生じるために不十分な水準で原子の無秩序状態を有する条件下で製造した抗菌性材料がγ-放射線源を照射することにより活性化して抗菌性になることができることを示す。
例18
この例はAg+イオンと異なり、抗菌性の作用の形成にきわめて有効である銀錯イオンの形成を示すために包含される。この例は種々の銀溶液に関するかなりの拡散および抑制帯域(ZOI)データを提供する。
溶液を製造し、AgNO3,Ag(NH3)2+,Ag(CN)2-,Ag(S2O3)23-およびAg(プロテイン)としてAg10000ppmを生じた。
銀溶液は以下のように製造した。
1)Ag(S2O3)3-,
AgCl2.66gを脱イオン水150mlに溶解した。Na2(S2O3)17.22gを添加し、脱イオン水を加えて体積を200mlにした。
2)Ag(CN)2-
同じ量のAgCN12.5g/lおよびKCN50g/lを混合した。
3)Ag(プロテイン)
2つの銀プロテイン試料を試験した。銀プロテイン粉末(シグマS-67670.5g,lot#121H3437,Ag20%)を脱イオン水10mlに添加した。銀プロテイン粉末(シグマS-9017 1.25g lot#33H3456 Ag8%)を脱イオン水10mlに添加した。
4)Ag(NH3)2+
硝酸銀を水酸化アンモニウムに添加し、黒い沈殿物を形成した。この溶液に更に水酸化アンモニウムを沈殿物が溶解するまで滴加し、溶液中に銀錯イオンAg(NH3)2+が残留した。
同じ濃度の硝酸塩、アンモニア、シアン化物およびチオ硫酸塩を含有する対照溶液を試験溶液中に存在するのと同様に製造した。試験溶液の抗菌性の作用を抑制帯域の試験により試験した。それぞれの試験溶液25マイクロリットルを含有する感受性ディスク(セルロース、直径6mm)をMHA(Difco培地)プレートの中央に置いた。感受性ディスク中の銀錯体またはイオンを37℃培養器中に保存したMHAプレート上で4時間で拡散させた。4時間後感受性ディスクをプレートから除去し、中性子活性分析(NAA、University of Alberta Slowpoke Reactor Facility)を使用して銀含量を分析した。別の組のプレートを使用して感受性ディスク中の銀錯体またはイオンのそれぞれに関してS.アウレウスに対する抑制帯域を測定した。寒天の試料をプレートの2つの位置、抑制帯域の端部およびディスクの下方から取った。寒天試料をNAAにより銀含量について分析した。制御溶液を抗菌性の作用について試験し、抑制帯域が生じないことが判明した。結果を第10表に示す。

上記の結果は、解離してAg+イオンを生じる周知の銀塩または化合物(たとえば硝酸銀および銀プロテイン)が限られた抗菌性の作用(ZOI6mm)を有することを示す。抗菌性の作用はAg+とは別の銀錯イオンを放出する銀組成物(たとえばAg(NH3)2+,Ag(CN)2-およびAg(S2O3)23-)に関して高い。銀錯イオンが寒天培地中でAg+イオンより多く拡散でき、これにより銀源から更に抗菌性の作用を達成することも明らかである。
前記のことによって拘束されるものではないが、Ag+イオンは抗菌性の作用においてあまり有効でないと確信される、それというのもこれは寒天培地中で存在する周知の塩素イオンとともに容易に沈殿するからである。他方で銀錯イオンは高い水準の抗菌性の作用および急速な拡散を示す。銀錯イオンは塩素イオンを含有する液体と接触する工業的な装置または医学機器および類似物に使用するために適する程度で塩素イオンとともに沈殿しないことも確信される。
例19
この例は銀抗菌性コーティングの比較拡散データおよび抑制帯域データを提供する。
3個の銀薄膜を第11表に記載の条件下にスパッタした。

コーティングを前記の例に記載されたようにZOI試験により抗菌性活性について試験した。例18に記載されたように寒天培地中に拡散4時間後NAAにより銀含量を測定した。比較結果を第12表に記載した。

主にAg+イオンを放出する薄膜1に関して少ないZOIを生じ、銀は薄膜の下方にAgClとして沈殿した。比較的多いZOI(6X)を生じる薄膜2に関して1/4の量の銀がウェーハ下方に沈殿した。これはAg+と異なる銀錯イオンが形成され、これがより容易に拡散することを示す。銀錯体種類の特性の結果として拡散が促進することが確信される。薄膜3は1または2より多くの銀を放出するが、銀塊状物がAg+の形で薄膜の下方にAgClとして沈殿する。しかしながらZOIの寸法はAg+のほかにAg+より大きい運動性を有する銀錯イオンが生じることを示す。1個以上のマイナスの銀ヒドロキシルイオン、Ag(OH)2-,Ag2(OH)3-またはAg3(OH)4-が生じることが確信される。このうち寒天培地中の塩化物はマイナスの銀ヒドロキシル-クロロ錯体を形成してもよい。
例20
この例はシアン化銀の錯イオンの製造およびこのイオンの抗菌性の作用を示すために包含されている。
典型的に電気めっきに使用されるシアン化銀浴を標準ZOI試験で感受性ディスク上で25マイクロリットルの浴を使用して抗菌性の作用について試験した。シアン化銀浴はシアン化銀37g/l、シアン化カリウム45g/lおよび炭酸カリウム30g/lを含有した。生じたZOIは全プレートを覆い、94mmより多い補正したZOIを示した。AgCN浴中で利用できる銀の最高量は30000ppmであった。前記作業からAgNO3としてのこの濃度は6mmより多いZOIを生じないことが理解される。シアンイオン単独の作用はKCN45g/lを有する25マイクロリットルを感受性ディスク上に配置し、ZOI試験を繰り返すことにより決定した。補正したZOI12.5mmを生じた。蒸留水中のAgCN溶液(37g/l)を同様にZOIについて試験した。補正したZOI14mmが観察された。
浴中の銀イオン対シアンイオンのモル比は0.37:1であった。これはイオン対としてマイナスの銀シアン錯体Ag(CN)2-またはAgCN(aq)の形成をたすける。前記の結果はこれらの銀錯イオンが抗菌性の作用を有し、寒天培地内で運動性が増大することを示す。
濾紙の薄片を硝酸銀溶液(Ag10000ppm)またはシアン化カリウム溶液(CN6400ppm)50マイクロリットルで処理した。薄片をMHAプレート上で標準ZOI試験した。硝酸銀対照薄片は補正したZOI8mmを生じ、KCN対照薄片はZOIを生じなかった。硝酸銀薄片およびシアン化カリウム薄片のそれぞれ1つをMHAプレートに互いに適した角度に配置すると、補正したZOIは硝酸銀薄片から30mmであり、シアン化カリウム薄片から22mmであった。
この結果は培地中で硝酸銀およびシアン化カリウムの組み合わせから生じる銀錯イオンが一方の溶液だけの場合より大きい抗菌性の作用を有することを示す。
例21
この例は塩化銀の銀錯イオンの抗菌性の作用を示すために包含される。
塩化銀を413550kPa(60000プサイ)で0.2gペレットに圧縮し、MHAプレート上で標準ZOI試験を使用して試験した。8mm帯域を生じた。AgCl0.15gおよびNaCl0.05gの混合物を60000プサイでペレットに圧縮し、同様に試験した。24mm帯域が観察された。
利用可能な塩素イオンの増加した濃度は銀錯イオンAgCl2-の形成をたすける。これはAgClに関する抗菌性の作用をすでに向上したことを示す。
硝酸銀溶液(Ag10000ppm)を感受性ディスク(25マイクロリットル)でZOI試験で試験した。6mm帯域が観察された。同じ濃度のAgNO3を5%NaClを補充した寒天プレート上で試験した。20mm帯域が観察され、向上した抗菌性の作用を示した。5%NaClを補充した寒天の制御プレートは菌の成長(S.アウレウス)を抑制しなかった。
高い濃度の塩素イオンが銀錯イオンAg(Cl)2-の形成をたすけることが確信される。この種は硝酸銀から3倍のAg+の抗菌性の作用を示す。
例22
動物試験、炎症
第一の皮膚炎症研究をニュージーランド白うさぎ(New Zealand White rabbit)で本発明の抗菌性金属を被覆したガーゼを使用して実施した。作業ガスがAr/O299/1重量%である例7の作業条件を使用してUSPタイプVIIガーゼにコーティングを析出した。
被覆したガーゼをニュージーランド白うさぎの脇腹のはがれたまたははがれていない皮膚に配置した。24時間でガーゼを除去し、除去して1時間、24時間および48時間後にこの位置を赤班および浮腫について等級づけた。
すべての動物が研究の終了まで生きた。いずれの動物にも赤班、浮腫またば感染が認められなかった。メスのニュージーランド白うさぎの皮膚に配置した場合にガーゼに局所的な炎症を生じなかったことが推測された。
例23
動物試験-感受性
本発明による抗菌性金属コーティングを被覆したUSPタイプVIIガーゼに対するハートレイギニアピッグ(Hartley Guinea Pig)の感受性を試験した。ガーゼを例7によりAg/O299/1重量%を使用して被覆した。試験材料を注入できず、誘発帯域にドライアイスを適用することにより最も正確に臨床状況を模擬実験するので分割補助技術を使用した。
どの動物に被覆したガーゼに誘発された赤班および浮腫が認められ、炎症が認められなかったか明らかでなかった。すべての動物が研究の終了まで生きた。
分割補助技術により試験した場合にオスのハートレイギニアピッグの皮膚に被覆したガーゼを適用することにより局所的感受性を生じなかった。
例24
この例は銀粉末/NaCl混合物がAgCl2-であると思われる銀錯イオンから抗菌性の作用を生じることを示すために包含される。
銀粉末(1ミクロン)およびNaCl(25%)のペレットを前記の条件で圧縮した。ペレットを用いた抑制帯域試験により抗菌性の作用を測定した。圧縮した銀粉末の比較制御を抑制帯域について同様に試験した。結果を第13表に示す。


例25
この例は前記の例に記載された抑制帯域試験を使用して良好な抗菌性活性(補正した抑制帯域、CZOI)を示すスパッタ析出した銀薄膜の構造的および化学的特性を示す。この薄膜は第14表に要約した条件下でシリコンウェーハ支持体(標的から100mm)に直径20.3cmの固体の平面の銀マグネトロン標的をスパッタリングすることにより製造した。全質量ガス流量は700sccmであった。支持体温度と銀の融点(1234K)の比T/Tmは0.3未満であり、薄膜の厚さは名目的に3000Åであり、入射角度はそれぞれの場合に90°(標準的な入射)であった。析出した銀の特性および引き続きアニール化した(空気中で140℃で90分)銀の特性をこの例に記載する。該薄膜は構造的特性(粒度、欠陥の種類、再結晶)、化学的特性(ドーパント濃度、原子のO%または酸化物含量に関するドーパント濃度)および電気的特性(静止電圧)により特徴づけられる。結果を第15表および第16表に要約する。
薄膜中のドーパント濃度をX線光電子分光法(XPS)および二次イオン質量分析法(SIMS)を使用して測定した。XPS技術において入射光として単色AlKαX線を使用した。表面の不純物を除去し、新たな表面をXPS分析について露光するために4kVArイオンビームが2mm×2mm帯域上を走査した。SIMS分析について12.5kのプラスのセシウムイオンビームを用いた。XPSおよびSIMSデータから算定したドーパント濃度を析出した薄膜とアニール化した薄膜の両方について第15表および第16表に要約する。本発明による生物学的活性銀薄膜の1つの有利な特性はドーパントの存在であることが理解できる。XPSおよびSIMSデータからこの場合は酸素かまたは酸化銀および酸素の両方であるドーパントが塊状物の薄膜中で銀原子と化学的に結合しないことが示される。更にドーパントは酸素として室温固体溶解度をこえる量で銀に組み込まれた。
析出した薄膜およびアニール化した薄膜の粒度は透過型電子顕微鏡(TEM)で撮影した像から測定した。このデータは第10表および第11表に記載され、本発明の抗菌性活性銀薄膜が200nmより小さい平均粒度を有することを示す。析出した活性薄膜は約140nm未満の平均粒度を有した。析出した最も活性の薄膜は90nm未満の平均粒度を有した。更に高分解能透過型電子顕微鏡により約90℃で再結晶(Trec)が開始したことが示された。この微粒の生物学的に活性の薄膜の粒の成長は0.33Tmより十分に低い温度で、特に140℃以下で生じ、この場合にTmはK温度で表した銀の融点である。一般に再結晶は抗菌性活性を減少した。しかしながら高い水準の酸化銀を有するコーティング(コーティング3および6)はアニーリング後に抗菌性活性を保持した。酸化物がアニーリング後に抗菌性活性を保持するために原子の欠陥を十分に拘束することが確信される。
TEM分析から生物学的に活性の銀薄膜が多くの成長双晶を含有することが更に示された、空気中で140℃で90分アニール化するとこの成長双晶が消失し、アニーリング双晶が生じた。しかしながらこの後者の双晶は再生、再結晶および銀薄膜を低いエネルギ状態に変化する粒の成長の結果であった。明らかにこの析出した銀薄膜はこの粒の成長を受ける結合した成長双晶と一緒に高いエネルギ状態に存在した。従って析出した薄膜中の前記のこの欠陥の存在は本発明による抗菌性コーティングの際立った特徴である。第1図および第2図はそれぞれ析出した銀薄膜およびアニール化された銀薄膜に認められる粒度および双晶を示す透過型電子顕微鏡写真である。
銀薄膜の静止電圧は1モル(1M)水酸化カリウム(KOH)溶液中で参照電極として飽和甘コウ電極(SCE)を使用して測定した。第15表および第16表は静止電圧がプラスである場合にのみ銀薄膜が抗菌性挙動を示したことを表す。静止電圧がマイナスである場合に生物学的活性は認められなかった。





本明細書中に記載された全ての刊行物は本発明の属する技術分野における熟練者の水準を示すものである。本願明細書中の全ての刊行物は、個々の刊行物がそれぞれ別個に参照のために挿入すると示されたと同じ範囲に参照のために挿入されている。
本明細書中の用語および表現は、説明のための用語として使用されたものであり、それにより本発明を制限するものではない。かかる用語および表現を使用する場合、説明されかつ記載された特徴に相応するものを排除することは意図されず、この場合本発明の範囲は以下の請求項によってのみ定義され、かつ制限されることが認められる。
(57)【特許請求の範囲】
1.1つまたはそれ以上の抗菌性の金属を含有する抗菌性材料を製造するための方法において、この方法が、標準的な秩序を有する結晶状態での材料と比べて増大した割合で、アルコールまたは水を基礎とする電解質の中へ少なくとも1つの金属の原子、イオン、分子またはクラスターを持続的に放出する材料中での原子の無秩序状態を保持するために拡散移動を制限する条件下で、1つまたはそれ以上の抗菌性の金属を含有する材料中に原子の無秩序状態を生じさせ、少なくとも1つの抗菌性の金属を、局在化された抗菌性の作用を提供するのに十分な濃度で放出させるために放射線の低い線状エネルギー伝達形態を用いて該材料に照射することからなるものであることを特徴とする、抗菌性材料の製造法。
2.抗菌性の金属が、Ag、Au、Pt、Pd、Ir、Sn、Cu、Sb、BiおよびZnまたは前記金属の合金または化合物からなる群から選択されている、請求項1に記載の方法。
3.材料が、1つまたはそれ以上の抗菌性の金属の粉末または箔であり、原子の無秩序状態が該粉末または箔の冷間加工によって形成される、請求項2に記載の方法。
4.材料が、ナノサイズの結晶性粉末である、請求項3に記載の方法。
5.析出の間、拡散を制限し、かつ析出に続くアニーリングまたは再結晶化を制限するような条件下に、該材料が、蒸着によって支持体の上にコーティングとして形成されている、請求項2に記載の方法。
6.材料が、真空蒸発、スパッタリング、マグネトロンスパッタリングまたはイオンプレーティングによって形成されている、請求項5に記載の方法。
7.抗菌性材料が、原子の無秩序状態がマトリクス中に生じさせるために異なる材料の原子または分子を有するマトリクス中に抗菌性の金属を同時か、逐次的または反応性に析出させることによって形成された複合コーティングであり、前記の異なる材料が、蒸着の雰囲気からマトリクス中に吸着されたかまたはトラップされた酸素、窒素、水素、硼素、硫黄またはハロゲン原子;抗菌性金属の酸化物、窒化物、炭化物、硼化物、ハロゲン化物、硫化物または水素化物;及びTa、Ti、Nb、V、Hf、Zn、Mo、SiおよびAlからなる群から選択された不活性の生物学的適合性金属の酸化物、窒化物、炭化物、硼化物、ハロゲン化物、硫化物または水素化物からなる群から選択された1つまたはそれ以上の成員として析出されている、請求項6に記載の方法。
8.抗菌性の金属が銀であり、前記の異なる材料が、酸化銀および蒸着の雰囲気からマトリクスの中へトラップされたかまたは吸着された原子または酸素を有する分子の1または双方である、請求項7に記載の方法。
9.被覆されている表面の温度対析出されている抗菌性材料の融点の割合が絶対温度で0.5未満であり、かつ作業ガス圧は1.3Pa(10mT)を上回るような程度の条件で、コーティングがマグネトロンスパッタリングによって形成されている、請求項5に記載の方法。
10.被覆されている表面の温度対析出されている抗菌性材料の融点の割合が絶対温度で0.5未満であり、かつ作業ガス圧は1.3Pa(10mT)を上回るような程度の条件で、コーティングがマグネトロンスパッタリングによって形成されている、請求項7に記載の方法。
11.被覆されている表面の温度対析出されている抗菌性材料の融点の割合が絶対温度で0.5未満であり、かつ作業ガス圧は1.3Pa(10mT)を上回るような程度の条件で、コーティングがマグネトロンスパッタリングによって形成されている、請求項8に記載の方法。
12.放射線の形態が、γ線、β線およびX線から選択されている、請求項1、3または6のいずれか1項に記載の方法。
13.放射線の光源が、1Mradを上回る用量で使用される、γ線である、請求項1、3または6のいずれか1項に記載の方法。
14.照射されている抗菌性材料が、放射線の入射に対して垂直に配向されている、請求項1、3または6のいずれか1項に記載の方法。
15.材料が、照射の間、絶縁材料に近接させられている、請求項1、3または6のいずれか1項に記載の方法。
16.材料が、照射の間、酸化珪素表面の間に挟み込まれている、請求項1、3または6のいずれか1項に記載の方法。
17.微粒状の抗菌材料において、200nm未満の粒度であり、該材料が、アルコールまたは水を基礎とする電解質との接触の際に、局在化された抗菌性の作用を提供するのに十分な濃度で、少なくとも1つの金属の原子、イオン、分子または少なくとも1つの金属を含有するクラスターを持続的に放出するのに十分な原子の無秩序によって特徴付けられ、その際、抗菌性の金属が、異なる材料の原子または分子を有するマトリックス中に形成されており、その異なる材料が、不活性の生物学的適合性金属、酸素、窒素、水素、硼素、硫黄、ハロゲン原子および抗菌性の金属または不活性の生物学的適合性金属のいずれか一方または双方の酸化物、窒化物、炭化物、硼化物、硫化物及びハロゲン化物から選択されている微粒状の粉末の形であり、該抗菌性の金属が、1つまたはそれ以上の抗菌性の金属またはその合金または化合物によって特徴付けられる、微粒状の抗菌材料。
18.抗菌性の金属が、Ag、Au、Pt、Pd、Ir、Sn、Cu、Sb、BiおよびZnまたはこれらの合金または化合物からなる群から選択されており、かつ生物学的適合性金属は、Ta、Ti、Nb、B、Hf、Zn、Mo、SiおよびAlからなる群から選択されている、請求項17に記載の抗菌性材料。
19.抗菌性の金属が、Ag、AuまたはPdから選択されており、かつ生物学的適合性金属は、Ta、TiまたはNbから選択されている、請求項18に記載の抗菌性材料。
20.純粋な銀金属、酸化銀およびトラップされたかまたは吸着された酸素原子からなる、請求項17に記載の抗菌性材料。
21.20nm未満の粒度である微粒子状の粉末の形状である、請求項17、18、19または20のいずれか1項に記載の抗菌性材料。
22.140nm未満の粒度であるナノサイズの結晶性粉末の形状である、請求項17、18、19または20のいずれか1項に記載の抗菌性材料。
23.抗菌性の金属が、銀またはその合金または化合物であり、該材料が、1Mの水酸化カリウム中で飽和参照甘汞電極に対して測定した際に、プラスの残留電位を有し、再結晶化の温度対融点の割合が、絶対温度K、(Trec/Tm)で、0.33未満であり、アルコールまたは水を基礎とする電解質との接触の際に、局在化された抗菌性の作用を提供するのに十分な濃度で、銀を含む原子、イオンまたはクラスターまたは持続的に塩基を放出することを特徴とする、請求項17に記載の抗菌性の材料。
24.材料が、更に、再結晶化の温度対融点の割合が、絶対温度K、(Trec/Tm)で、0.3未満である、請求項23に記載の材料。
25.材料が、更に、40℃未満の再結晶化の温度である、請求項23に記載の材料。
26.材料が、更に、200nm未満の粒度である、請求項25に記載の材料。
27.材料が、更に、140nm未満の粒度である、請求項25に記載の材料。
28.材料が、更に、90nm未満の粒度である、請求項25に記載の材料。
29.ナノサイズの結晶性粉末の形状である、請求項25に記載の材料。
30.純粋な銀金属と酸化銀との混合物の形状である、請求項26または29に記載の材料。
31.純粋な銀金属および吸着されたか、トラップされたかまたは反応させられた酸素原子または酸素分子の形状での、請求項26または29に記載の材料。
32.更に、酸化銀を含有する、請求項31に記載の材料。
33.微粒状の抗菌性材料を製造するための方法において、異なる材料の原子または分子を有するマトリクス中の1つまたはそれ以上の抗菌性の金属を、粉末の形状で、冷却された支持体の上への蒸着によって析出させて、粉末が、アルコールまたは水を基礎とする電解質との接触の際に、少なくとも1つの抗菌性の金属のイオン、原子、分子またはクラスターを、アルコールまたは水を基礎とする電解質の中に、局在化された抗菌性の作用を提供するのに十分な濃度で持続的に放出するような程度に原子の無秩序状態を有する材料を得、その際、異なる材料は、不活性の生物学的適合性金属、酸素、窒素、水素、硼素、硫黄、ハロゲン原子および抗菌性の金属または不活性の生物学的適合性金属の酸化物、窒化物、炭化物、硼化物、硫化物およびハロゲン化物からなる群から選択されていることを特徴とする、微粒状の抗菌性材料の製造法。
34.抗菌性の金属が、Ag、Au、Pt、Pd、Ir、Sn、Cu、Sb、BiおよびZnまたはこれらの金属の1つまたはそれ以上の合金または化合物からなる群から選択されており、かつ生物学的適合性金属は、Ta、Ti、Nb、B、Hf、Zn、Mo、SiおよびAlまたはこれらの金属の1つまたはそれ以上の合金または化合物からなる群から選択されている、請求項33に記載の方法。
35.抗菌性の金属が、Ag、AuおよびPdから選択されており、かつ生物学的適合性金属は、Ta、TiおよびNbから選択されている、請求項34に記載の方法。
36.酸素の原子または分子がマトリクス中にトラップされているかまたは吸着されているような程度に、蒸着の間に作業ガス雰囲気中に酸素が含まれている、請求項35に記載の方法。
37.析出されている抗菌性の金属が、純粋な銀金属または酸化銀であり、かつ析出された材料が純粋な銀金属を含有し、かつ酸化銀およびトラップされたかまたは吸着された酸素の原子または分子の1つまたは双方を含有するような程度に、酸素が作業ガス雰囲気中に含まれていてもよい、請求項36に記載の方法。
38.材料が、微粒状の粉末として析出されている、請求項33、34または35のいずれか1項に記載の方法。
39.材料が、ナノサイズの結晶性粉末として析出されている、請求項33、34または35のいずれか1項に記載の方法。
40.微粒状の抗菌性材料が、200nm未満の粒度である、請求項33、34または35のいずれか1項に記載の方法。
41.微粒状の抗菌性材料が、140nm未満の粒度である、請求項33、34または35のいずれか1項に記載の方法。
42.微粒状の抗菌性材料が、90nm未満の粒度である、請求項33、34または35のいずれか1項に記載の方法。
 
訂正の要旨 審決(決定)の【理由】欄参照。
審決日 2006-12-28 
出願番号 特願平7-514124
審決分類 P 1 41・ 852- Y (C23C)
P 1 41・ 851- Y (C23C)
最終処分 成立  
前審関与審査官 田中 則充  
特許庁審判長 板橋 一隆
特許庁審判官 増田 亮子
斉藤 信人
登録日 2006-05-12 
登録番号 特許第3802053号(P3802053)
発明の名称 抗菌性材料  
代理人 矢野 敏雄  
代理人 矢野 敏雄  

プライバシーポリシー   セキュリティーポリシー   運営会社概要   サービスに関しての問い合わせ